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An algorithmic method is presented to determine the irreducible representations that engender
the irreducible representations associated with phase transitions involving a change of symmetry
to a subgroup of index n. This method is based on the work of Ascher and Kobayashi [E. Ascher

and J. Kobayashi, J. Phys. C 10, 1349 (1977) ] and the derivation of faithful irreducible
representations contained in the permutation representation of transitive subgroups of
permutation groups S, . Character tables of all such irreducible representations, and their
epikernels, associated with a change in symmetry to a subgroup of index n = 2, 3, 4, 5, and 6 are
given explicitly. The relationship to exomorphic types of phase transitions is then discussed. The
irreducible representations associated with the phase transitions O ) to C}, in BaTiO;and D §, to
D¢ in B-K,SO, are derived and it is shown that these two phase transitions belong to the same

exomorphic type.

I. INTRODUCTION

The use of group-theoretical methods to investigate
structural phase transitions was introduced by Landau' over
forty years ago. In the Landau method of determining the
change of symmetry accompanying a phase transition, the
lower symmetry phase is described by a density function,
which is expanded in terms of basis functions of the irreduci-
ble representations of the higher symmetry phase. With the
coeflicients of the density function expansion as variational
order parameters, a thermodynamic potential is constructed
and minimized to determine the form of the density function
and subsequently the symmetry of the lower symmetry
phase.>? The most extensive tabulations of changes in sym-
metry accompanying phase transitions derived using this
method have been given by Toledano and Toledano.*

A number of necessary group-theoretical criteria have
also been derived for use in determining the change in sym-
metry accompanying a phase transition.>>~ These include
the subduction criterion, chain subduction criteria, also
called the chain criterion,® the Landau criterion for contin-
uous phase transitions, and the Lifshitz homogeneity crite-
rion. Using some or all of these criteria, tabulations of possi-
ble lower-phase symmetries have been derived for some
phase transitions in crystals. For cases where the higher-
phase symmetry group is a cubic space group, such tabula-
tions have been given for O } by Goldrich and Birman® and
Vinberg et al.,'® for O} by Jaric,® and for O by Sutton and
Armstrong'' and Ghozlen and Mlik.*? Recently a computer
program has been developed by Hatch and Stokes' and all
the above mentioned criteria have been applied to all 230
space groups.

In parallel with the application of the Landau method
with minimization, and the development and application of
group-theoretical criteria, investigations into general theo-
rems that apply to the change in symmetry accompanying a
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phase transition have also been developed. Such general
theorems date back to the original papers of Landau.’ It was
shown by Landau that the irreducible representation asso-
ciated with a phase transition, where the lower-phase sym-
metry group is a subgroup of index 2 of the higher-phase
symmetry group, is a one-dimensional alternating irreduci-
ble representation. It was also conjectured that no phase
transition between a higher-phase symmetry group and a
lower-phase symmetry subgroup of index 3 is continuous.
This so-called subgroup of index 3 theorem was shown to be
valid for special cases by Anderson and Blout'* and Boc-
cara.'’ General proofs were subsequently given by Meisel,
Gray, and Brown'® and Brown and Meisel.'” It has also been
shown that the Landau subgroup of index 3 theorem cannot
be extended to a subgroup of index n theorem with n#£3."®
Continuing the investigation into the group-theoretical
aspects of phase transitions, Ascher and Kobayashi!® have
introduced the so-called “inverse Landau problem.” This
problem is to determine the irreducible representation asso-
ciated with a phase transition between a given higher-phase
symmetry group and a given lower-phase symmetry group.
Following the work of Gufan and Sakhnenko?® and Ascher
and Kobayashi,'” Kopsky has introduced the concept of
“exomorphic” types of phase transitions.”’~?* For example,
all phase transitions between a higher-phase symmetry
group and lower-phase symmetry subgroup of index 2 be-
long to a single exomorphic type. Such a concept stresses the
mathematical similarity among phase transitions and can be
used in the study of the general properties of phase transi-
tions. Two phase transitions belonging to the same exomor-
phic type have, for example, the same set of order parameters
and the same mathematical form of the thermodynamic po-
tential. The transitions can, however, differ in the physical
interpretation of the order parameters and corresponding
terms in the potential can be of different physical impor-
tance.?? The concept of exomorphic types of phase transi-
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tions can also be used as a basis of proofs of general theorems
concerning phase transitions as, for example, in the alternate
proof of the subgroup of index 3 theorem.?*

In this paper we continue the study of exomorphic types
of phase transitions. In Sec. II we briefly review the method
of Ascher and Kobayashi and its connection to the subduc-
tion criterion.’ We give an algorithmic method to determine
the irreducible representations associated with a phase tran-
sition between a higher-phase symmetry group and a lower-
phase symmetry subgroup of index n. We then determine
and tabulate the irreducible representations that engender
all irreducible representations associated with phase transi-
tions where the subgroupindex» = 2, 3,4, 5, and 6. For each
irreducible representation we also determine the epikernels,
i.e., the isotropy groups, the subgroups that satisfy the sub-
duction and chain-subduction criteria.

In Sec. II1, we apply the results of Sec. II, to determine
the irreducible representation associated with each of the
two phase transitions O}, to C}, and D§, to D}S. We also
determine the epikernels associated with each of these phase
transitions. In Sec. IV we show that these two phase transi-
tions belong to the same exomorphic type. We then derive
additional phase transitions, which also belong to this exo-

morphic type.

Il. IRREDUCIBLE REPRESENTATIONS ASSOCIATED
WITH A PHASE TRANSITION

We consider a phase transition between a higher-phase
symmetry group G and a lower-phase symmetry F, where F
is a subgroup of G of index n. Let D *(G) denote the irreduci-
ble representation of G associated with this phase transition.
Given the groups G and F we consider the inverse Landau
problem, to determine the possible irreducible representa-
tions associated with the phase transition.

We apply the subduction criterion

(D*(G){F|D'(F))#O0. H
That is, the subduced representation D “(G) | F, the irreduci-
ble representation D “(G) restricted to the elements of the
subgroup F, must contain the identity representation D ' (F)

of F a nonzero number of times. Using the Frobenius Reci-
procity Theorem,?® Eq. (1) can be replaced by

(D '(F)1G|D*(G))5£0. (2a)

The irreducible representation D *(G) must be contained a
nonzero number of times in the induced representation
D'Y(F)1G.

We shall use the symbol D% (4) to denote the induced
representation D !(B) 14. Equation (2a) can then be rewrit-
ten as

(DG (G)|D*(G))#0. (2b)
We shall also use the symbol D; = Dg 411G to denote the
representation D; of G “‘engendered by the representation
D,y of its factor group G /H. Engendering?® is defined as
follows: Let H be a normal subgroup of G. The cosets g, H of
the coset decomposition of G with respect to H are elements
of the factor group G /H. If D; ., is a representation of G /H
then to every cosetg, H ofthe factor group G /H corresponds

662 J. Math. Phys., Vol. 27, No. 3, March 1986

a matrix Dg 5 (g,H). To define the engendered representa-
tion Dg = Dg ,; 11G, we set all matrices D (g, k), for all A
of H, equal to the matrix D, (g, H).

It has been shown 272® that

D =Dg5(G/H)11G. (3)

The induced representation D & (G) is engendered by the
induced representation D £/%, (G /H) of the factor group G /
H, where

H=Core F= nGgFg“‘. 4
ge

From Egs. (2b) and (3), it follows that an irreducible
representation D “(G) associated with a phase transition
between the group G and subgroup F of G is such that

D%(G) =D*(G/H)11G (5)
and
(D&% (G /H)|D*(G /H))#O0. (6)

That is, the irreducible representation D “(G) is engendered
by an irreducible representation D“(G /H) of the factor
group G /H, and D *(G/H) must be contained in the in-
duced representation D &% (G/H) a nonzero number of
times. In addition, since the kernel of D “(G) is equal to the

subgroup H (see Refs. 19 and 27), i.e.,
ker D*(G) = H = Core F, (7

the irreducible representation D “(G /H), which engenders
D %(G), is a faithful representation of G /H.

A matrix D  (a) of an induced representation D § (4) is
also the matrix representing the permutation of the cosets of
B in A under multiplication of the cosets by the element a of
A (see Refs. 28 and 29). The group of matrices is called a
“permutation representation” and represents a group of per-
mutations that is transitive on the cosets of B in 4. The di-
mension of this permutation representation is equal to the
number of cosets of B in 4. Consequently, the representation
D%/ (G /H) is a permutation representation of a transitive
subgroup T, isomorphic to G /H, of the symmetric group
S,, where n is the index of Fin G.

A method to determine all possible irreducible represen-
tations D *(G) associated with a phase transition between a
group G and subgroup F of index n in G isbased on Eqs. (5)-
(7). Such irreducible representations satisfy the subduction
criterion and, of course, are further restricted by the use of
the chain subduction criterion, Landau criterion, and Lif-
shitz criterion. We have that an irreducible representation
D *(G) is engendered by a faithful irreducible representation
D“(G/H), which is contained in the permutation represen-
tation of a transitive subgroup T, , isomorphic to G /H, of the
symmetric group S,. A method to determine the irreducible
representations D “(G) is as follows.

(1) Given the group G and subgroup F of index n, deter-
mine the subgroup H, Eq. (4), and the factor group G /H.

(2) Determine the transitive subgroup T, isomorphic
to G /H, of the symmetric group S, , and the faithful irreduci-
ble representations in the permutation representation of 7, .

(3) Each faithful irreducible representation of the per-
mutation representation determines an irreducible represen-
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TABLE L. Character table of the faithful irreducible representation contained in the permutation representation of the transitive subgroup 6/6 of S;. Above
each character is the number and cyclic notation of the elements in each class. The diagram shows the epikernels of the irreducible representation. The

generators of each epikernel are listed below the diagram.

6/6(48)C3 X020 )
1 3 8 6 6 3 8 6 6
(1% (122%) (3 2% (124) 2% (142) 6) (1%2%) (24)
3 -1 0 -1 1 -3 1 0 1 -1 (LA)

2 2
01(3)

03: (3456), (154236)
iDY: (3456), (36)(45); (1426), (16)(24); (1523), (15)(23).
4p§": (134)(256), (13)(25); (136)(254), (16)(24); (145)(263), (15)(23); (156)(234), (16)(24).
6D 3 (12), (36) (45); (12), (34)(56); (46), (15)(23); (46), (13)(25); (35), (16)(24); (35), (14)(26).
6C5Y: (16)(24); (15)(23); (36)(45); (34)(56); (13)(25); (14)(26).
3C: (12); (46); (35).

tation D (G /H), which in turn engenders, Eq. (5), a possi-
ble irreducible representation D “(G) associated with the
phase transition between G and subgroup F.

To implement this procedure requires the knowledge of
all transitive subgroups T, of the symmetric groups S, and
all faithful irreducible representations contained in the per-
mutation representation of each transitive subgroup. We
have tabulated all transitive subgroups of the symmetric
groups S, for n =2, 3, 4, 5, 6 and the faithful irreducible
representations contained in the permutation representation
of each transitive subgroup.®® In Table I, we give an example
from this tabulation. The table contains the following infor-
mation.

(1) A symbol n/m( p), where n is the degree of the
symmetric group .S,, m is a serial number given to a transi-
tive subgroup 7,,, and p is the order of the transitive sub-
group T,. This is followed by a symbol or symbols, which
denote the group T,.

(2) The character table of the faithful irreducible repre-
sentations contained in the permutation representation of
T, is given. The classes of elements are given in cycle length
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notation with the number of elements in each class given
above the class symbol. The symbol ““(LA)” is written to the
right of the character table if the irreducible representation
satisfies the Landau criterion.

(3) Using the lattices of the symmetric groups,’' we
have derived and tabulated the epikernels®* for each faithful
irreducible representation of the transitive subgroup T, . The
subgroup index of the epikernel is given along the line con-
nected each pair of groups and the subduction frequency is
given in parenthesis following the subgroup symbol. If there
is more than one subgroup of a specific class, the number of
such subgroups is given preceding the subgroup symbol.

(4) The generators of at least one epikernel of each class
of epikernels is given. When the number of epikernels is not
large, as in Table I, the generators of all epikernels in each
class are given.

1il. EXAMPLES

We shall consider two phase transitions: (1) the equi-
translational transition from O} to C}, in BaTiO, and (2)
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the nonequitranslational transition from D¢, to D}} in -
K,SO,. We shall determine the irreducible representations
associated with these phase transitions and show that the
respective irreducible representations are both engendered
by the same faithful irreducible representation.

We first consider the phase transition from G =0, to
F=C),, the equitranslational subgroup of O} with the
Pomt group C4u = {E’ C4z’ CZz’ C4: l’ my, my, mxy! mxy};
C, isasubgroupofindexn = 6inO ). Thecoreof F=C},,
see Eq. (4),is

H=CoreC,, =C},

where C} is the translational subgroup of O } . It follows that
G/H = 0} /C! and is isomorphic to the point group O, of
order 48. Then D £/% is a permutation representation of a
transitive subgroup of order 48 of S,. There is only one such
transitive subgroup of S, the group denoted by 6/6(48) giv-
en in Table I. This permutation representation contains a
single, Landau active, faithful irreducible representation
whose character table is given in Table I. This character

TABLE I1. Character table of the faithful irreducible representation contained in the permutation representation of the transitive subgroup 6/6 of S°. In the
first and second column are the number and cyclic notation of the elements of each class whose character is given in the third column. In the fourth column,
we list in cyclic notation all elements of the transitive subgroup belonging to each class. Below each element we list the cosets of the factor groups O 4/C! and

D%, /C? isomorphic to this transitive subgroup of S,

1 (1% 3 (1 (2)(3)(4)(5)(6)
(E |000)
{(£]000),(C, |004)}
3 (14,2%) -1 (35)(46) (12)(46) (12)(35)
(C,,|000) (C,, (000) (C,|000)
{(E1010),(C,. J011)} {(E]110),(C,. |11})} {(£100),(C, |104)}
8 (3% ) (145)(263) (136)(254) (134)(256) (156)(234)
(CSxyzlm) (Cknl(m) (CSx’zlw)) (Clxﬂlm)
{(G,|010),(C ¢ Yj01p)} {(c; "1010),(Cql01}) } {(C;*|000),(C,)001)} {(C;11110),(Cq|111)}
(154)(236) (163)(245) (143)(265) (165)(243)
(C 52 1000) (€ 353:(000) (C 551000) (C 5,2/000)
{(C;"1100),(C¢|10) } {(Gy110),(C 5 11D} {(C,]000),(C;'f004)} {(C,]100),(C 5| 104)}
6 2% -1 (15)(23)(46) (14)(26) (35) (12)(36)(45)
(C1yy )|000) (C21,.|000) (C,y, [000)
{(C1,1000),(C[00D}  {(Cay|110),(Cyy| 11}  {(C,, |000),(C7,|004)}
(13)(25) (46) (16)(24)(35) (12)(34)(56)
(C25,/000) (C1x,1000) (Cy5,000)
{(€4.100),(Cy,| 101 } {(C.,,1000)(C,|001) } {(C,,|010),(C;;l013)}
6 (12,4) 1 (3456) (1426) (1325)
(C . |000) (C.,|000) (C+: [000)
{(C,,1100),(C,,|10) } {(C,.,1100),(Cyj10) } {(C2,|110),(Cyp| 111}
(3654) (1624) (1523)
(C . '{000) (C; '1000) (C;;'|000)
{(€,,1110),(C,, | 111)} {(C,,,1010),(Cy,|011)} {(€ 4 [010),(C,,J011)}
1 2% -3 (12)_(_35) (46)
_ (1]o00)
{(1]000),(m, |00} }
3 (14,2) 1 (12) (35) (46)
_ (m,]000) _ (m, |000) _ (m,]000)
{(1]010),(m,|015)} {(1}110),(m,|111)} {(1]100),(m,|103) }
8 6) 0 (134256) (143265) (163245) (145263)
(sﬁxyz 'm) (Sﬁiyz |(m) (sﬁxil |m) (saxy! lm)
{(S51101),(S5,100)} {(8,)11),(5 ¢ '|110)} {(5,)003),(S ¢ *|000)} {(5,]104),(S s '1100)}
(165243) (156234) (154236) (136254)
(S & 1000) (S &, [000) (S &5.1000) (S &,41000)
{(5,]01}),(S ¢ '|010)} {(S51014),(Se[010)} {(55|004),(5,/000) } {(S 5 '113),(S110)}
6 (1323 1 (13)(25) (16) (24) (34)(56)
(m, |000) (m,, |000) (m,, ]000)
{(m,|004),(m, |000)} {(m,|114),(m,, |110)} {(m,|004),(m, |000)}
(15)(23) (14)(26) (36)(45)
(my,|000) (m, |000) (m;,|000)
{(m;,)104),(m, {100)} {(m;,|004),(m,, |000)} {(m,|014),(m, |010)}
6 (2,4) -1 (12)(3456) (1426)(35) (1325) (46)
(545 |000) (S4,|000) (S 4, 1000)
{(m,[11}),(m, |110)} {(m,|013),(m,, |010)} {(m,|014),(m, |010)}
(12)(3654) (1624)(35) (1523)(46)
(5 &= '|000) (S 5 '|000) (S '1000)

{(m,[101),(m, {100)}

{(m,|104),(rm,, |100)}

{(m,]113),(m, ]110)}
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1
3C4v(1)
(1)
6C2v(1)\
365 (2) 6C2(2)
\1 /
&)

FIG. 1. Epikernels of the irreducible representation D *= @®004— (01},

table is given in detail in Table II. In the first three columns
we duplicate the first three rows of the character table given
in 6/6(48) of Table I. To the right of each character we list
explicitly in cyclic notation the elements of each class of this
transitive subgroup of S,

The factor group G/H = O, /C| is isomorphic to this
transitive subgroup of S denoted by 6/6(48). The isomor-
phism is between elements P, of 6/6(48) and cosets
(R;|000)C!} of G /H. In Table II we have denoted the coset
(R,;|000)C} isomorphic to P; by listing below the element
P, the coset representative (R, |000). This isomorphism and
the faithful irreducible representation of the transitive sub-
group 6/6(48) of S; determines the irreducible representa-
tion D*(0 }/C ), see Eq. (6), which in turn engenders, Eq.
(5),the irreducible representation D *(0 ) ) associated with
the phase transition between O} and C),. This irreducible
representation D *(0}) is denoted by D ¥ =%%04- (0! yin
the notation of Cracknell et al.**

Using the epikernels and generators of the epikernels
given in Table I along with the isomorphism between the
elements of 6/6(48) and cosets of O ) /C | given in Table II,
we can derive the subgroups of O }, which satisfy the chain-
subduction criterion for phase transitions from O} associat-
ed with the irreducible representation D ¢ =%004- (1},
These epikernels are given in Fig. 1.

The second example is the phase transition from hexag-
onal G’ = D¢, to orthorhombic F' = D }$. The subgroup
D }; has the translation subgroup generated by the hexagon-
altranslations (E |1,0,0), (£ |1,2,0),and (£ |0,0,1). Theele-
ments of D§,, which are the coset representations of D 1¢
with respect to its translational subgroup, are

(E0,0,0), (1]1,1,0),

(C10,01), (m5|1,1,1),
(Cx|1,1,0), (m,]0,0,0),
(Cn|L14), (m,]|0,00).

Now D }$ is a subgroup of index #n = 6 of D¢,. The core of
F'= D{‘,f, see Eq. (4), is
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H'=CoreD;; =C3.

The group C3 has the translational subgroup generated by
the hexagonal translations (E |2,0,0), (E|0,2,0), and
(E|0,0,1). The elements of D ¢,, which are the coset repre-
sentatives of C? with respect to its translational subgroup,
are (E |0,0,0) and (C,|0,0,4). The factor group G'/
H' = D¢$,/C3 is isomorphic to the point group O, of order
48. It follows that D7’ is then a permutation representa-
tion of a transitive subgroup of order 48 of S,. This is the
same transitive group, 6/6(48) given in Table I, as that
which arose in the first example given above.

The isomorphism between the elements P; of 6/6(48)
and the cosets (R;|7;,)C2% of G'/H ' is given in Table II. Two
lines below each element P, of 6/6(48) given in Table II we
have denoted the isomorphic coset (R;|7;)C2 of G'/
H'=Dg,/C2. Since

(R;|7)C% = (R,|7,)C| + (R;|7,)(C|0,0,})C1,

where C 1 is the translational subgroup of C 3, we list the two
elements (R |r;) and (R,|7,)(C,,|0,0,}). This isomorphism
and the faithful irreducible representation of the transitive
subgroup 6/6(48) of S; determines the irreducible represen-
tation D*(D ¢, /C?), Eq. (6), which in turn engenders, Eq.
(5), the irreducible representatlon D*(D¢ s ) associated
with the phase transition between D ¢, and D 1$. This irredu-
cible representation D<(D§,) is denoted by
D*=4092—(p% ) in the notation of Cracknell et al.3?

Using the epikernels and generators of the epikernels
given in Table I along with the isomorphism between ele-
ments of 6/6(48) and cosets of D ¢,/C?2 given in Table II,
we can derive the subgroups that satisfy the chain-subduc-
tion criterion for phase transitions from D ¢, associated with
the irreducible representation D*= %92~ (D%, ). These
epikernels are given in Fig. 2.

The above two examples are at first glance quite differ-
ent, one being an equitranslational phase transition while the
second is nonequitransiational. However, as we have seen,
these two transitions are mathematically similar; the asso-
ciated irreducible representations are engendered by the

3D2h(1)

C v

6D2h(1)

\

5
362h(2)

S

2
c3(3)

ZV(Z)

/

FIG. 2. Epikernels of the irreducible representation D *= 4092~ (D%, ).
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TABLE III. Phase transitions O, to C/, and O}, to D%, that belong to the
exomorphic type of phase transition characterized by the permutation rep-
resentation of the transitive subgroup 6/6 of S,. Here, H = Core F= C|
for all cases.

G=0; F=CJ, F=D%,
i j k
1 1 5
2 6 8
3 7 5
4 4 8
5 9 11
6 10 1
7 1 12
8 12 12
9 9 9

10 12 10

same faithful irreducible representation. This mathematical
similarity of different phase transitions has been codified by
the concept of exomorphic types of phase transitions.?!->*

IV. EXOMORPHIC TYPES OF PHASE TRANSITIONS

Two phase transitions, between a higher-phase symme-
try group G and lower-phase symmetry F and between a
higher-phase symmetry G' and lower-phase symmetry F’,
are said to be of the same exomorphic types if and only if 2!
(1) the factor groups G /H, where H = Core F,and G'/H ',
where H' = Core F', areisomorphic; and (2) there exists an
isomorphism that maps the factor group F/H into F'/H '

Alternatively,?* we can state that two phase transitions
aré of the same exomorphic type if and only if a suitable
labeling of the cosets g, F and g;F’ in the coset decomposi-
tions G with respect to F, and G ' with respect to F’ exists such
that the permutation representations D%5/% (G/H) and
D ‘;',j’;', (G'/H') are identical groups of permutations.

In the examples of Sec. I11, both the transitions G = O }
toF=C) and G' =D}, toF’ = D¢ are of the same exo-
morphic type. The factor groups G/H=04/C!} and G'/
H'=D}$,/C3% are isomorphic with the isomorphism given
in Table II, where we find that F/H = C!,/C} is isomor-
phicto F'/H’ = D ;;/C}. The permutation representations
D&% (G/H) and DE/Z (G'/H') are identical groups of
permutations isomorphic to the transitive subgroup 6/
6(48) of S;.

It follows from the above and Egs. (1)-(6) that if the
phase transitions from G to F and G’ to F' are of the same
exomorphic type, then the irreducible representations
D*(G) and D*(G'), which can be associated with the re-
spective phase transitions, are each engendered by faithful
irreducible representations contained in a single permuta-
tion representation. This is the permutation representation
denoted by DE/Z (G/H) and DE/2' (G'/H’), and is a

G'/H'
permutation representation of a transitive subgroup, iso-
morphic to G /H and G'/H', of the symmetric group S,,.
If the permutation representation contains a single
faithful irreducible representation then this faithful irreduci-
ble representation engenders the irreducible representations

associated with all phase transitions belonging to the exo-

TABLE IV. Phase transitions D%, to D J, that belong to the exomorphic type of phase transition characterized by the permutation representation of the
transitive subgroup 6/6 of Ss. Here Ch. 1 and Ch. 2 refer to the alternative choice of origins as given in the International Tables for Crystallography.** The shift
in origin, with respect to the translational subgroup of D, is also given. Here, H = Core F is given to the right on the same row as F.

G H
Dl D;:(Pﬁﬁl) Ch.1 D;,,(Pi-z-l) (140)Ch.1 o
mmn ban
D;h(p_zil_z_) ;h(piﬁ}_) C:'
5 5 322
(P2 22) 0 s(p__n_) c!
Dz"(ch am 440 b mm *
Dy, D} (1"2'l C] l) G40 3 (Pl 2 i) (0,0,1) Ch.1 Ci
ccn nnan
Dgh(pﬁl__z_) gh(p_z_ﬁi) c!
ncn C; g
2,22 2
D] (P—‘———) 40 ] (P-———-‘——) 40 c!
wl P —— (44,0 w\ P 1,1,0)
2,2, 2 222
D“(P—‘—l—‘—) 1,0 DS (P————‘) 40 c:
Dy, 2 Uiy (4,1,0) £l G 1,4,0) 2
D;;(pﬁiﬁ) D;g(p_z_ll.?_l) c!
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morphic type. In the examples of the previous sections the
irreducible representations D*=©@%?4—(0}) and
D*=4002- D%y are associated with the phase transi-
tionsfromG=0)to F=C}, andG'=D¢, toF' =D},
respectively. These two phase transitions belong to the same
exomorphic type, and both irreducible representations are
engendered by the same faithful irreducible representation,
denoted by D*(0 L/C1) and D*(D¢,/C3%), the only faith-
ful irreducible representation contained in the permutation
representation of the transitive subgroup 6/6(48) of S,.
The two phase transitions G=0, to F=C,, and
G' =D}, to F' = D} belong to the same exomorphic type
whose permutation representation is the permutation repre-
sentation of the transitive subgroup 6/6(48) of Ss. Addi-
tional equitranslational phase transitions belonging to this
exomorphic type withG = 04 and F=CJ, and F=D¥%, as
given in Table III. In Table IV we give the phase transitions
between G = D%, and F = D 4, that belong to this exomor-

phic type.
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Complete bases are constructed for all finite-dimensional irreducible representations of the simple
Lie algebras over C of the types 4, (n>1), B, and C, (2<n<6), D, (4<n<6), and G,. Each basis
vector is given as an explicit sequence of weight-lowering generators of the algebra acting on the
highest weight vector of the representation space. A similar construction (due to D-N. Verma) for

the highest weight representations of all Kac-Moody algebras of rank 2 is presented as well.

I. INTRODUCTION

The present article contains an exploitation of a new
method due to D-N. Verma for construction of bases in irre-
ducible representation spaces of simple Lie algebras. As far
as we know no final account of the method has been pre-
pared, not to mention published. In the first place, a proof
for the construction requires the Demazure character for-
mula that has only recently been proved to be correct for the
semisimple Lie algebras and is still only conjectured in the
Kac—-Moody situation. In the second place, we have found
that there is a further unsolved problem regarding a right
choice of expressing the opposite involution of the Weyl
group as a product of reflections. The problem occurs only
for rank > 3. The choice can be made in many different ways,
some of which are fatal for the algorithm. Unfortunately
there seems to be no proof at present that a successful choice
can always be made. However, the numerous examples be-
low attest that a suitable choice is often possible.

In this paper the method is applied to a series of particu-
lar cases, namely the simple Lie algebras of rank < 6 and of
all types except F, and E,. For algebras 4, the results are
given for all ranks. It is also clear that an extension of our
results to algebras of types B, C, and D, and ranks >6 is
straightforward. Once the difficulties are avoided, the result
of the method is a set of basis-defining inequalities which, in

our opinion, is a striking development for the theory of semi-
simple Lie algebras and their finite-dimensional representa-
tions. Let us point out the following features of the inequal-
ities.

(1) The inequalities define a set of linearly independent
vectors that span the whole representation space.

{2) A given set of the inequalities refers to a Lie algebra of
a specific type and applies to any irreducible finite-dimen-
sional representation of the Lie algebra.

(3) The number of inequalities for a given algebra is

equal to the number of positive roots of the algebra. For
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many particular representations, the number of inequalities
required is often much smalfler.

(4) Bases provided in this way are of a particularly con-
venient kind for applications: They consist of eigenvectors of
the Cartan subalgebra and thus each basis vector is labeled
by “additive quantum numbers” that are the components of
a weight of the representation.

(5) The bases are not related to any fixed subalgebra(s) in
general. This allows a relatively versatile further adaptation
to a particular subalgebra of importance at any time.

(6) Matrix elements of suitably chosen generators of the
algebra relative to a Verma basis can be easily calculated, but
no general closed formulas can be given.

Once the inequalities were derived for a given algebra,
they were checked by counting the number of basis vectors
and comparing it with the dimension of the representation.
In addition the dimensions of dominant weight subspaces
were compared with an independent computation of the
dominant weight multiplicities.’

Section II contains the two simplest examples: the Lie
algebras 4, and A4,. The first of them is elementary. How-
ever, the second one is quite nontrivial in spite of its simpli-
city. In Sec. III our results are presented. An account of the
derivation is contained in Sec. IV together with some exam-
ples and an illustration of the difficulties of the procedure. In
Sec. V we sketch some of the theory behind the construction.
The purpose of this section is to bring to the readers’ atten-
tion the beautiful ideas of D-N. Verma and to provide some
insight into what otherwise seems like a magical prescrip-
tion.The last section contains conclusions, comments, and
the basis-defining inequalities for all rank 2 Lie and Kac—
Moody algebras in a uniform form as found by Verma.?

The principle involved in the construction is heavily de-
pendent on the use of Schubert submodules and the theory of
SL,-induced modules. Although we have had no luck in the
cases of F, and E, there are many choices of opposite involu-
tion and it is far from clear that the method will not work for
all simple Lie algebras.
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Il. TWO EXAMPLES

The simplest case is the Verma basis for the Lie algebra
of rank 1. We choose the commutation relations as

[e.f1=h, [hel=2e [hfl= -2 (1)
An irreducible representation is denoted by its highest
weight A = (L), where L =0,1,2,... is an integer equal to
twice the “angular momentum.” In this case it is well known
that the irreducible representation space V' (A) is of dimen-
sion L + 1 and that it is spanned by the vectors

|ILM ) =f°|LL), )
where

0<a<L (3)
and

M=L-—-2a, e|lLL)=0. (4)

The vectors |LM ) are pairwise orthogonal. They can be nor-
malized using the relations

elLM) =W(L — M)L +M—2)|LM +2), (3)

In this simple case Eq. (3) is the basis-defining inequality of
Verma.

Our second example is the Lie algebra 4,. This time one
hase, f;, h;,i = 1 and 2, satisfying (1) for each simple root a; .
We make no use of the remaining generators of 4,. The
Verma basis of an irreducible representation space V'(A),
where A = (m,m,) is the highest weight, consists of all vec-
tors

FYf5s v myms), (8)
such that

0<a,<m,,

0<a,<m; +ay, (9)

0<a;<min[m,,a,].

Let us consider some particular representations. Thus
for the representation A = (10), which is of dimension 3, the

inequalities (9) allow exactly three sets of values for the expo-
nents a,, a,, and a, in (8):

A=(10: [1,0), £i|1,0), £2fi11,0). (10)
fILM) = WL +M)L —M+2)|LM -2), (6} Similarly one finds the bases for the representations (0 1),
hILMY = M|LM). () (20} and(1 1) Namely
A=(01): [0,1), AlO1), £AI01); (11)
A=(20): [20), fi[20), f112,0),
2 £1112,0), (12)
HiROY o ooy,
A=(L1): I1,1)
(000)
AlLD AL
(001) (010)
LAILD fAIL1)
(011 (110) (13)
FIAILD fHAAILD
(021) (111)
RVERINY
(121)
-
In the last example the basis vectors are arranged into levels  (f7% 5" " e fo¥ =" ) f 18" e ful o3t ) e (f S2) S 3] A),

of successive applications of f;’s, and under each one we
show the values of a,, a,, and a; as (a,4,a,). Clearly no other
values of the parameters a,, a,, a; are alowed by (9) for
m, =m, = 1. The two vectors f; f|]1,1) and f, £|1,1) of
zero weight are linearly independent since f, /,#/, fi.

Iii. BASIS-DEFINING INEQUALITIES
A. The Lie algebras A4,

In this case the basis-defining inequalities can be written
in a form that applies to any rank >1. Any basis vector for
V(A), A = (my, m,,..., m,), is then

669 J. Math. Phys., Vol. 27, No. 3, March 1986

N=n(n+1)/2. (14)

Brackets are used in (14) only to indicate the regularities of
the sequence of /’s. The basis-defining inequalities are found
in Table L.

B. The Lie algebras B, and C,,, 2<n<6

The basis-defining inequalities for B, and C, are closely
related due to the duality of their simple roots. Thus for each
rank they have to be calculated for only one of the two alge-
bras. For the other one they are obtained by renumbering of
the roots and by a substitution of a;’s. Nevertheless, we write
them out for both types.
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TABLE I. Basis vectors and defining inequalities of an irreducible 4, representation (m,, m,,..., m,). A dotted line with 4, indicates the last inequality for

4,

(It oW foin ) AFIFEIAY, N =nin+1)/2

OKAIKM ] coerrriiriisiveisisssiirsiis s rssssss s sserssssssissssossnesssasaes
0<a,<m, + a,

0<a,<min[m2,a2]

0<a,<my +a,
0<as<min[m, + a;,a,]
0<ag<min[m;,a;]
0<a,<my + a,
0<ag<minfm, + as,a,]
0<a,<min[m, + a4a)

0Ky o<MID[M4y05]crerenierreireieiirieissnssenes s e
0<a;,<ms + a,

0<a ,<min[m; + 64,a;,]

0<a,;<minfm; + a5,2,,]

0<ay <min{ms + @,0,a5)

0<a,s<min[my,a,] .......

0<016<m6 +ay,

0<a;,<min[mg + a,5,a,4)
0<a,3<min{mg + a,3,a,7]
0<a,o<min[mg + a,4,a,4)
0<ay,<min[mq + a,5,a,]

0<a,;<min(mg,a,,]

0<aN—n+l<m? +ay_2n+2
0<“N-n—2<mfn[mn + Oy _2ms 358N nt1)
0<ay_nys<minlm, +ay_ 2,4 48854 2]

0<ay_ <minfm, + ay_,, 1,0x_;]
0<ay <min{m,.,ay_]

Somewhat special is the lowest case of B, or C,. Al-
though the two algebras are isomorphic, it is sometimes con-
venient to distinguish two forms of the algebra by using op-
posite numbering of the simple roots. Our results are shown
in Table II. The two sets of inequalities shown in the table
correspond to different numberings of the simple roots and
both refer to the basis vectors of the same form as given
there. Consequently, Table II defines two quite different
bases for each irreducible space.

For B, (C,)theroota,, is the short (long) one among the
simple roots. A generic basis vector is of the form

(f17 oo ot o (f12 e font ) f17 e f0

X |my, my,..., m, ). (15)

TABLE II. Basis vectors and defining inequalities of an irreducible repre-

The basis-defining inequalities are given in Tables III, V,
VII, and IX for B, (3<n<6) and in Tables IV, VI, VIII, and
X for C, (3<n<6). The transition B,—C, is done by the
following transformation:

m,<2m,,

a,<2a,, forallr=1 mod n. (16)

C. The Lie algebras D,,, 4<n<6
The basis vectors are taken of the form

(o) o020 o (0 () f e £

X |my,my,..., m,) (17)

TABLE III. Basis-defining inequalities for any irreducible representation
(my,m,,m;) of B,

sentation (m,,m,) of B, or C,. The two cases differ by numbering of the o—a»
simple roots. 1 2 3
'a, f'0, £a, £a, 0<al<m3

S35 my,my) 0<a,<m, + a,
a» €D 0<a;<m, +a,
1 2 1 2 0<a,<min[m, + a,,2a,]

0<as<min[m, + as,m, + a,,a; + la,}

0<a,<m, 0<a,<m, 0<as<min[m,,\a,.a;]
0<a,<m, + a, 0<az<m, + 2a, 0<a7<min[m| + "592‘13'2‘15 - 206]
0<a,<min[m, + a,,2a,] 0<a;<minf}(m, + a,),a,] 0<a,<min[m, + ala,]
0<a,<min[m,,ia;] 0<a,<min[m,,a,) 0<a,<min{m,,a;]
670 J. Math. Phys., Vol. 27, No. 3, March 1986 Lietal 6870



TABLE IV. Basis-defining inequalities for any irreducible representation
(m,my,m;) of C;.

TABLE V1. Basis-defining inequalities for any irreducible representation
(m,my,mqymy) of C,.

&€ D
t 2 3

0<a,<m,

0<a,<m, + 2a,

0Ka,<m, + a,

0<a,<mina,}{m; + a,)]
0<as<minfa, + a,m, + 2a,m, + a,]
0<as<min[m,,a,,a;)

0<a;<min{a,,a5 — ae}(m, + as)}
0<az<minfa,m, + ag)
0<ay<minfag,m,]

for all ranks. The basis defining inequalities are given in Ta-
bles XI-XIII.

D. The Lie algebra G,
Here a, is the short root. A generic vector is written as
Sy 1 mismy) (18)

and the basis-defining inequalities are found in Table XIV.

IV. DERIVATION OF BASIS-DEFINING INEQUALITIES

In order to set up a generic form of basis vectors for an
Lie algebra g relative to a Cartan subalgebra §) one has to
choose a form of the opposite involution, which we denote by
inv. That is, the element of the Weyl group of g that trans-
forms every positive root into a negative root or, equivalent-
ly, every highest weight of a representation into the lowest
one. The involution can be written as a sequence of N reflec-
tions r;, 1<i<n, in planes orthogonal to simple roots ¢, of g,
where N is the number of positive roots of g. The actual
expression of inv in terms of reflections 7, is far from unique.
Thus, for instance, we took inv = r,7,r, for A,, but the choice
inv, = r,r;r, would have been equally admissible. Once inv
is fixed, say

inv=r, r, wr,r (19)

iN'iy_1 Bl

TABLE V. Basis-defining inequalities for any irreducible representation
(my,my,my,my) of B,.

0<a,<m,

0<a,<my + a,

0<a,<m, + a,

0<a,<m, + a,

0<as<min[m; + a,,2a,]

0<as<min[m, + a;,m, + as,a; + kas]
0<a,<min[m, + a,m; + a0, + a0, + 3as)
0<ag<minfm,,ias.84,a;]

0<a,<min[m, + a¢,2a;,2a, — 2a, + 2a4,2a, — 24,)
0<ao<min[m, + a,,m, + aq,a, + Yag,a; — ag -+ 1a,)
0<a;;<min[m, + ag,}as,2,q]

0<a,,<min[m,.a,,]

0<a,3<min{m, + a,0,2a,,2a-2a3,2a,0 — 2a,,]
0<a,,vmin[m, + a,,,1a,,]

0<ay s<min[m, + @,5,0,4]

0<a,s<min[m,a,5]

671 J. Math. Phys., Vol. 27, No. 3, March 1986

o—O0—CC e
0<a,<m,
0<a,<m; + 2a,
0<a;<m, +a,
0<a4<m| + a,
0<as;<min{i(m; + a,).a,]
0<a,<min[m, + 2as,m; + a,,a; + as)
0<a,<min[m, + ag,m; + a,a, + as,a, + a)
0<ag<min{m,,as,a4,a,]
0<ao<minfy(m, + a4),a3,a5 — ag.a, + a5 — a;]
0<a,o<min[m, + 2ag,m, + a,,a, + ag,a, — ag + a,)
0<a;, <min[m, + ay,a5,a,,]
0<a,,<min[m,,a,,]
0<a s<min[}{m, + a,0),a4,0; — a,a,0 — a;,]
0<a,,<min[m, + a,,,a,,]
0<a,s<min[m, + a,,,a,,]
0<a;s<min[m,,a,]

then the general form of a basis vector is chosen to be

fon o fefilAg), (20)
where f, is the generator corresponding to the simple root
a,. For definiteness we assume that f, , ¢,, and h, satisfy the
commutation relations (1) for every ¢, 1<g<n.

The derivation of the basis defining inequalities pro-
ceeds recursively. Suppose that the first X — 1 inequalities
are already known and that i, = p in (20), 1<k<N. The up-
per limit L (k) of a, is then found from the product of
h, =2a,/(a,,a,) with the weight x of the vector (20) with
a,=a;,, , =~=ay=0

(k) = (A - kila,a,-r,hp> —m,— S aah,), (1)

r=1 r=1
where (a;,h,) is the element 4,, of the Cartan matrix 4 of
the Lie algebra g. Next we split out of (21) the terms with a’s
corresponding to the same generator f,,:

k—1 k—1
(/‘:hp> = mp( E (l - 5pi,)arai, + Z apira’a'}’hl’)'
r=1 r=1
(22)
Here 6, is the Kronecker symbol. Then

Lk)=m, = 51180, h,) — 3. 8,b.(ah,),
i (23)

r=1

where b, is the average value of a,,
b, =(max a, + mina,). 24)

It is calculated from the first kK — 1 inequalities assuming
that all the parameters a, that occur in the first sum of (23)
are fixed, i.e., those corresponding to £, in (20) with 7#p.

Consider an example of the Lie algebra C, with the stan-
dard numbering of its three simple roots, where a,, is the
long root, and let us illustrate a derivation of the inequalities
of Table IV. An irreducible representation space of the high-
est weight A = (m,,m,,m,) decomposes into the direct sum
V(A)= e,V (A;u) of subspaces V(A;u) labeled by the
weights u of the weight system Q(A) of A. We choose the
opposite involution of C; as follows:

Lietal 671



TABLE VII. Basis-defining inequalities for an irreducible representation (m,,m,,m,,m,) of Bs.

0<a,<my

0<a,<m, +a,

0<a,<m; + a,

0<a,<my, + a4

0<as<m, + a,

0<as<min[2a,,m, + a,)

0<a,<min(a, + Jag,m; + ag,m, + a;]

O0<ag<min[m, + a;,m, + 6,0, + a;,a, + 4ag]

0<a,<min{m, + ag,m, + @s5,a5 + 87,05 + ag,as + 4]
0<ao<minfjag,a;,2,05,m4]

0<a,,<min2a,,m; + a,,2a, + 2a, — 2ag,2as + 2a; — 285,24, — 2a,,]
0<ay,<min[m, + a,,,m; + G5,a4 + 3ay,,05 + a5 — @5 + 48,,,85 — a10 + 4a,,]

0<ays<minlm, + a1,m; + Gg,ds + 16,1,8s + 32,089 — 10 + 311,85 — @10 + 12

0<a,4<m§n[alz,a s + Groddan]
0<a,s<minfa,,m;]

0<a,e<min[2a,,m; + @,5,2a5 + 263 — 285,245 — 2810.2a5 + 2a,, — 2a,3,285 + 2a,, — 2810 — 2a,3,2a,; — 2a,,]

0<ay,<min[m, + @,em; + @13,85 + 316,05 — @10 + 4016813 — Q14 + J16)
0<ayg<min[m, + a,,,a,7.4a;6]

0<ag<min[m, + a,5,a,4]

0<a,,<min[m,,a,g)

0<a,,<min{m, + a,7,285,285 — 28,0,2a,5 — 2a,4,20,5, — 24,4]
0<a,<min{m, + a,3,4a,]

0<a,;<min[m, + a,4,a,,]

0<a,<min[m, + a,,0,;]

0<a;s<min[m,.a,,]

I0V = P71 Pyl ol s,

(25)

Successive application of individual reflections from inv
transform A = (m,,m,,;m;) into the lowest weight,
invA = — A =(— m,, — m,, — m,) of Q(A). For details of
the action of the Weyl group on weights see, for instance,
Ref. 1 or 3. A Verma basis of ¥ (A) consists then of the vectors
() given by (15) with n = 3. The weight x is then

p=A—(a, +a,+aja,

— (@, + a5 + agla, — (a5 + a6 + ag)a;. (26)

Expressing A, a,, a,, and a; in the basis of fundamental
weights (“omega basis” of Table 2 of Ref. 1), one has

p=(m;—(as+ag+a)—a,—as—a,
m, —2(a,+a;+as+as+ag+ag) —a, —as—a,,

ms —2(a, — a4 + a;) — a, — as — ag). (27)

The first three inequalities of Table IV are a direct conse-
quence of the weight algorithm. The upper limit L (4) of a, is
then calculated according to (23):

TABLE VIIL. Basis-defining inequalities for an irreducible representation (m,my,ms,m,ms) of C,.

0<a,<mg

0<a,,m, + 2a,

0<a;<m, + a,

0<a,<m, + a,

0<as<m, + a,

0<es<minfa,}(m, + 4]

0<a,<min[m; + 2a5,m, + az,a; + ag]

0<ag<min[m, + a,,m, + a,a, + ag,a, + a;}

0<ag<min[m, + ag,m, + as,as + a5,as + a,,85 + ag)

0<a o< min{m,,aq,a:,a5,3;)

0<ey <minfayi(m, + a;),a; — ay0.a, + a; — agsas + a; — ag]
0<a,<min{m, + 2a,1,m; + 5,04 + 011,05 + a5 — Gy + @11,85 — @10 + ay1]

0<a,3<min{m, + @15,m; + agds + @y1,8s + 833,85 — 3o + @y 1,89 — @10 + ay3]

0<a,4<m.in[m, + @40,831,812,03]
0<a,s<min{m;,a,,]

0<a,c>minfa,}(m; + ;)84 — 810,05 + @3 — 85,05 + @33 — 013,812 — B1.085-810 + G2 — @13)

0<a,;<minjm, + 2a,,,m; + 8,305 + 8,689 — 819 + 816,833 — G14 + @14
0<a,g<min[m, + 0,4,8,6a,7]

0<ay<min(m, + a,5,a,]

0<a20<min[m21al9]

0<a, <minfas,}(m, + @y7),8y — 810,813 — 14,817 — @15

0<a,,<min[m, + a,5,a;,]

0<a,;<minm, + a,4,a,,]

0<ay<min{m, + a,4,a,,)

0<a;s<minfm,,a,,]
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TABLE IX. Basis-defining inequalities for an irreducible representation (m,,m,,m;,m ,ms,mg) of B,

0<a,<mg

0<a,<ms + a,

0<a;<my +a,

0<a,<m,y + a,

0<as<m, + a,

0<ag<m, + as

0<a,<min[2a,,ms + a,)

0<ag<min[m, + a;,ms + as,a; + ja]

0<a<minf{m, + ag,m;s + a,,0, + ag,a, + a;]

0<a o<min(m, + ag,ms + as,as + agas + a5,05 + 1a;]
0<a,,< min[m, + 8,0, + 46,06 + 810,85 + a9, + 5.6 + §7]
0<a,;,<min{ms,a, ,a,0,05.a5,437)

0<a,;<min[2a,,m, + ag,2a, + 2a; — 205,285 + 2ag — 28,024 + 28y — 2a,,,2a; — 2a,,]

0<a,<min(m; + a,3,M, + G5,84 + 1813,8y + a5 — 10 + 423,85 + a5 — @y, + 1843,05 — 2,2 + 1a;5]

0<as<minfm, + @14,/ + @16,05 + 313,85 + 14586 + @10 — 81y + §813,86 + 810 ~ Gy + 810810 — A13 + 313,850 — 1 + 6]
0<a,e<minfm, + a,5,m, + a,1,86 + 4a,3,85 + 01486 + @15,81) — a1z + §a13,81; — ayy + ay48) — @y, + a55]

0<a,;,<min{m, + a,,,10,3,0,4,,5::¢]
0<a,y<min[m,,a,;]

0<ao<minfm; + a,4,2a,,2a5 + 20, — 2a,0,2a5 + 285 — 2a,3,205 + 20, —~ 285,205 + 2a,, — 28,
. 2“6 + 2‘110 - 2au + 2“14 - 2“15’2‘110 - 2"12 + 2“14 - 2415,20" - 2alz + 2“14 - 2‘116'2‘19 - 2“1212‘114 - 2":7]
0<ayo<minfm, + ayg,m; + 8,5,85 + 321086 + a10 — 811 + 401086 + G1s — G5 + §8,0,810 — G12 + 144,

ayy — Gy + Gy — Gy + Ja10815 — a7 + 1056]

0<a,, <min{m, + dyo,m; + 6,686 + 4319,05 + a20,81 — 813 + 319,81y — G4y + B20,8y6 — By7 + 019,816 — @17 + @2]

0<ay,<minfm, + 2,5,4,9,050,221]
0<ay;<minfm; + a,5,8,,]
0<a,,<min[m;,a,]

0<a,s<min{m, + a,,,285,2a + 28,5 — 241,20 + 20,5 — 2a16,285 + 2a39 — 285,
) 2a,; — 28,3 + 2a,5 — 2a,5,2ay, — 28,5 + 2850 — 28,,,20,5 — 2817 + 2850 — 2831,20,0 — 241,205 — 2,7, 2859 — 285,]
0<a <min(m, + ay5,m; + 51,86 + §025,811 — 812 + 425,016 — @17 + 3825082 — @23 + }055]

0<ay;<min(m; + a2,8,6,40,]

0<a,s<min[m; + a,3,a,]

0<azo<min(m; + a,4,a3)

0<a;0<min[m,,a,,]

0<ay, <minfm, + 0,6,20,20; — 2a,5,20,5 — 28,2,285) — 2855,20,5 — 24,7}
0<a;5,<min[m, + a,3,4a,,]

0<ay;<min{m, + a,5,a3,]

0<az <min{m, + a,5.a3;]

0<a;s<min[m, + 34,434

0<ayg<min[m,,a;}

L(4) =m; — as{a,hs) — ay(ayh,) — bi{ash,), (28)
where b, is found from (24). Namely, using the first three
inequalities one has
max a, = ms,
min g, = max[0,}(a; — m;)] = min[0,4(m, — a,) ]
= a, + min[a,4(m, + a,)]. (29)

Substituting (29) into (24) and using that in (28) together
with the matrix elements

(aphs) =0, (axphy) = —1, (a;h;)=2 (30)
of the C;-Cartan matrix, one gets L (4) = min[a,,}(m, + a,)].
The upper limits L (k) of Table IV with 5<k<9 are found in
exactly the same way.

Finally let us illustrate a failure of the method. Let us
choose again the Lie algebra C; but this time put

inV = 7P rararrarrsr, (31)

instead of (25). It is a perfectly valid expression of the oppo-
site involution, because inv A = — A. Furthermore it im-
plies that the basis vectors are of the form
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S S e Sf of s 2 \mymo,ms) (32)
rather than (15). Derivation of the first five inequalities pro-
ceeds without problem according to the procedure described
above. One gets

0<a,<m,,

0<a,<m; +a,,
0<a;<min[2a,,m; + a,],
0<a,<min[m;,}a;],
0<Las<m, + a, + a;.

At the next step when L(6)=(A— (b, +by)a,

— asa, — (a, + a,)a,,h,), one needs to find the average
b, + b, of a, + a,. However, it is not clear how to proceed
because the variables a, and a, are not independent in (33)
so that (24) does not apply. A numerical evaluation is un-
doubtedly all but useless.

V. COMPLETENESS OF THE VERMA BASES

The choice of positive roots for g (relative to a Cartan
subalgebra §)) determines a decomposition

(33)
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TABLE X. Basis-defining inequalities for an irreducible representation (m,,m,,ms,mms,mg) of Cg.

0<a,<my

0<a,<ms + 2a,

0<a,<my + a,

0<a,<my + a,

0<as<m, + a,

0<as<my + as

0<a;<min(a,,}{ms + a,]

0<ag<min[m, + 2a,,ms + asa; + a;]

0<ag<min[m, + ag,ms + a,,0, + a5,0, + a;

0<a o<min[m; + ag,ms + 65,85 + 6,85 + 84,05 + a7]

0<ay <minfm, + @,0,M5 + a0 + G10,85 + 8,5 + Gg,06 + @7

0<a,,<min{ms,a,,05,05,8,0:41,]

0<a,,<minfa; }(m, + ag),a; — a12,84 + a5 — a9,a5 + a3 — @,0,85 + ds — Gy;]

0<a, <min{m; + 2a,3,m, + Go,a + 83,85 + dy — G10 + 843,05 + G5 — Gy + ay3,89 — Gy; + ay5)

0<a,s<minfm, + a,,m, + 010,05 + 13,05 + A14,86 + G10 — @1y + Q13,86 + @10 — @1y + B14810 — G1p + Gy,
@30 — @32 + G14)

0<a,s<min[m, + a,5,m4 + 611,85 + @13,86 + 814,86 + 035,811 — G2 + A13,81; — gy + 814,83 — G12 + Gy5)

0<a,<min[m, + 8,5,8,3,8142;5:216]
0<a,g<min{m,,a,,]

0<a,g<minfa,i{m; + ;s + a9 — G101 + Ay — G13,85 + @14 — 15,05 + @14 — 6
Qs+ 19— G11 + Q14 — Q15,810 — Gy3 + G1y — Q15,811 ~ Gpz + Gyy — Q16,09 — Q2814 — A7)
0<ayo<min[m; + 2a,5,m; + 815,85 + G15,06 + @10 — 811 + Q1986 + @15 — Q16 + G10)810 — @12 + a5

a4y — dy + Gys — Gyg + drgd1s — g7 + Ayo)

0<a,;<min[m; + @,0,m; + 816,86 + G10:86 + G20:81; — 12 + G100@11 — 12 + Arpis — 17 + Gy,

@6 — @17 + a)
0<az, <min(m; + @,7,8,0,920:021]
0<ay;<minfm; + a,5,2,,]
0<a,,<min{m,,a,,]

0<a,s<min[as,}(m; + axhts + d10 — 11586 + Q15 — 81686 + G20 — G211 — A1z + Gys — Gy,
81y = @1y + Gy — 31,816 — g7 + G0 — G21,810 — Q12,815 — Gy7sliz0 — Gp;)
0<a,s<minfm, + 25,7, + 31,86 + 825,011 — G2 + G515 — Q17 + o5,y — A2 + G35

0<ay;,<minfm; + 5,,a,5,026]

0<ay<min[m; + a,3,2,]

0<ayo<min[m, + a54,a,)

0< a5 <minfm;,a,]

0<ay, <minfag,k{m,; + 655).21) — 812,816 — 17,821 — A22,826 — ax)
0<a;,<min[m, + a53,a3)]

0<as;<min[m; + a,4,a3,]

0<a3<min[m; + a;9,a3,)

0<a;s<minfm, + a30,a,,)

0<ays<minfm, + a3,,a;]

TABLE XI. Basis-defining inequalities for an irreducible representation
(13, mp,ms,m) of D,

0<Ka,<m,

0<a,<m;

0<a<m, +a, + a,

0<a,<m, + a,

0<as<minfa,;,m, + a,]

0<ag<minfas,m, + a,,m, + a; —a;]
0<a,<min[a, + aga, + as,m, + as + ag,m, + a,]
0<as<min[as,a5,0,,m,]

0<ao<mina,,m, + ag,a; — as]

0<a,,<minfa, — ag.a,,m, + as,m, + a, —ay] .
0<ay,<min[as,a,o,m, + ag]
0<ay,<minfayy,m,]

TABLE XII. Basis-defining inequalities for an irreducible representation
(my,mymy,mms} of Ds.

0<a,<my

0<a,<m,

0<a,<m; +a, +a,

0<a,<m, +a,

0<as<m, +a,

0<ag<min(a;,m; + a,]

0<a,<minfa,,m, + a;,m, + a; — ag]

0<az<minfa, + aga, + a;,m, + ag + a;m; + a,)

0<a,<min[m, + ag,m; + as,a5 + ag,as + a,as + ag)

0<a o< min[m;,,a4,a,,a4,a5)

0<ay,<minla,,m, + a,85 — 210,05 + a5 — a5}

0<a,,<minla,,m, + ag,m, + ag — a,;,85 + a3 — dg,a5 — d;0)

0<a,3<[minm, + a; + @185 + a1, — 410,85 + a1; — a15,M; + G,
a5+ a,,,5 + ay;]

0<ay,<min{a,,,a,,,@13,M; + a,]

0<a,s<min|a,,m,] .

0<a,s<min(as,m, + a,5,8,5014,09 — @)

0<ay;,<minfas,m, + a,;,m, + @13 — 816,85 — 10,813 — a14]

0<a,s<minfa,¢,a,7,m; + a14]

0<a,o<minfa,q,m; + ;5]

0<ay<minfa,g,m,]
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TABLE XIIL Basis-defining inequalities for an irreducible representation (mm,,m,,m;,m4,ms,mg) of Dy.

0<a,<mq

0<a,<my

0<a;<m, +a, +a,

0<a,<my + a,

0<as<m, +a,

0<as<m, + as

0<a,<min[m, + a,,a;]

0<ag<minfa,,m, + a;,m, + a; — a;]

0<ag<min[m, + a,m; + a; + ag,a, + a5,a, + a5)

0<a o<min[m, + a5,m, + ag,as + 7,85 + ag,as + ag]

0<a, <min(m, + ae,m, + 10,86 + 83,85 + 5,05 + A5,05 + @10
0<a,,<min[m,,a,,84,05,10,:011]

0<a,3<min[a,,m; + g0y + a5 — @10,85 + G — Q11,85 — Gy))

0<a,<min(a,,m; + 85,m;3 + G — 813,85 + G5 — 10,09 + G5 — Gy1,89 — ay5)

0<a,s<min{m; + a,0,m; + @;3 + 014,05 + 813,85 + 14810 — Q13 + A13,d10 — Q12 + 44

a6+ Q10— @y + A13,86 + 1o — 1y + a14]

0<as<min[m; + a,,,Mm; + @156 + 13,86 + G1436 + 15,011 — G5 + A13,81; — y3 + 181 — G132+ Gy5]

0<a,,<min(a,3,8,,,8,5,8,6M3 + a;,]
0<a,s<min(m;,a,,]

0<ao<minfas,m; + 814,810 — 12015 — Q12,06 + 1o — @116 -+ 15 — A16,81 — Ay + 15 — By¢]
0<ay<minfas,m, + a,3,m; + @5 — 819,810 — 12,815 — G17,86 + 810 — U116 + A15-G 16

@y — @+ dys — di)

0<a,,<min[m; + ay6,m; + @19 + 020,811 — @13 + G19)81; — A1z + Aa0816 — A17 + Ay

@16 — a7 + G086 + A15,8 + )
0<ay,<min{m; + @,7,8,0,8,0,:3;;)
0<ay;<minfay,m, + a,4)
0<a,,<minfm,,a,;]
0<a,s<minfag,m, + a;0,81; — 12,816 — A 17,05 — @)l
0<ays<minfag,m; 4 ay9,m, + a3y — @25,051 — G181 — A17:02; — G3,)
0<ay,<min(a,s,@,6,Mm; + a5,]
0<ays<min[a,;,m; + a,)
0<a,p<min(azg,m, + a,]
0<a;o<min[m,,a,

g=g_oheg..

Then b =heg, is a maximal solvable subalgebra (Borel
subalgebra) of g. Let V, be the representation space for the
representation of the highest weight A and let |A) be a high-
est weight vector. For each w € W, we denote by w|A) some
nonzero vector in the (one-dimensional) weight space ¥ ** of
V, and define the Schubert submodule ¥, (w) as the b-mod-
ule generated by w{A}. Thus ¥, (w) is obtained by applying
to w|A) the raising operators e, and operators from the Car-
tan subalgebra b. Evidently,

Va(l)=C(|A)) and V,(inv)= V(A)
Thus we have the filtration
Va(WDCVA(r)CVa(r,r,)C - CV¥(inv) = V,.

TABLE XIV. Basis vectors and defining inequalities for an irreducible rep-
resentation (m,,m,) of G,.

0= |
12

0<a,<m,

0<a,<m; + 3a,
0<a;<minfa,}(m, + 2a;)]
0<a,<min[2a,,}(m, + 3a,)]
0<as<min(ia,.i(m, + a,)]
0<as<minfas,m,]
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Each Schubert submodule ¥, (w) is a sum of weight
spaces and hence has a character Char, (w). An important
fact is the Demazure character recursion formula: if a is a
simple root, then

Char, (r,w) = A,(Char, (w))
__ Char,, (w) — {r, Char, (w)}e~*

—a

b

1—e

provided that r, wis a longer word in the Weyl group than w.

The relevance of this to the Verma basis construction is
that after the k th step we have a basis of ¥, (r; - r; ). To
understand what is happening as we pass from ¥, (w) to
V, (r,w) it is necessary to look at what Verma calls SL,
induction.

Let e, £, be the basis (1) of 8[,(C) over C and let
b = Ch + Ce. Let M be a b-module of dim M < o, whichisa
sum of h-weight spaces. Let U (3[,(C)) and U(b) be the uni-
versal enveloping algebras of 81,(C) and b, respectively. If
we induce M to an 8],(C) module, we obtain

M’ = U@BL(C))® yu, M.

Here, M’ has a unique minimal submodule J of finite codi-
mension. We define

Indg (¢, (M) =M'/J.
Thus Ind, c, (M) is the maximal finite-dimensional quo-
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tient of M '. Given D,UeC such that (U — D)/eN, there is a
unique b-module

V2V — Cx + Cex + - + Ce'/2U~ Dy
such that
(i) he’x = (D + 2)éx, j=0,1,..}(U—D);
(ii) €x =0, ifj>1(U—D);
(iii) dim V2V =3(U—-D) + 1.

Every indecomposable finite dimensional b-module is of this
form. We let 1, denote the one-dimensional module ¥4
and V%, L € N, the familiar ¥ — L which is even an 81,(C)-
module. Note that

VD'UQCIREVD+R’U+R.
In particular,
V>'=Vtel,, where L=4(U—D), A4=4(U+D).

One shows that
Ind,; (c, ( y o)

V:eV4, where L=}(U—D), A=}(U+D),
if {(U+D)eN and §(U~D)eN;
0, otherwise.

(34)
In the case that this induced module is not 0, it has the char-
acter

Char(ind(V>%)
= {Char(V>Y) — {r, Char(V>¥)}e~*}/(1 —e~*)
= A, (Char(V>Y)).

Here a is the simple root of 8[,(C) corresponding to e. It
follows that Char({Ind,; ¢, (M)) = A, (Char(M))for any fin-
ite dimensional b-module in which all the indecomposable
submodules satisfy the condition (34).

If we have a tensor product M = V' °>Vi g ... P Uk of
indecomposable modules, each satisfying the nonvanishing
condition (34), then

MxVPe..a Vg 14
where D, = }(U, — D,) and 4 = }2(U, + D,). Thus

Ind, ¢, (M) =VP @@ vPikgyA

Notice that if u,,.,uy is some basis of M then
{f*u,|0<k<4, 1<j<N} is a basis for Ind,;, (¢, (M).

Now we return to the ascending sequence of Schubert
modules. When we pass from ¥, (w) to V, (r,w) it is not
hard to see that V,(r,w) is the 8L¥(=Cf,

+ C[esfs ] + Ce,)-module in ¥, generated by ¥V, (w).
Comparing the induction character formula and the Dema-
zure formula shows that '

Valrow) = Indu,(CJ (Vs (w)).

Suppose that ¥, (w) has a basis of the form (20), where
0<4;<U; (j=1,.,N) and each U, is a function of
a,,...,a;_, (precisely as we have obtained in the Verma con-
struction). Choose some fixed set of values for all a;’s for
which f; #f, . The remaining a,’s—say, 4 ,...,a; —may still
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vary but they now have some lower constraints, just as in the
examples of Sec. IV. Suppose that we find

D<aq; <U,
: (35)
D,<q, <U,,

where D,,....D,, U,,...,U, are independent of a;, 553 . As
a; ,...,a; vary, the corresponding basis vectors determine a
basis for a subspace which apparently is a b*( = Ch,
+ Ce, )-module, M %, at least modulo some submodule X.
Furthermore M /K has the structure V2V g ... V2%
@ 1, where R is set to get the A -weight correct. When we
induce M ¢, we arrive at

Ind(M*) = VY20 =20

1/2(U, — D, R+ (1722(U; + D))
( r ')QV ] l,

-4
with basis

Ffe - FitIA), 0<a<R+ 30, +D)).

This gives some credence to the Verma construction. The
conditions (35) are exactly what we have seen are necessary
to continue the construction.

VI. CONCLUSIONS AND COMMENTS

The inequalities calculated in this work allow one to
write down a complete basis in any finite-dimensional space
V (A), irreducible with respect to a representation A of any of
the Lie algebra/group of types 4,,, 1<n, B, and C,, 2<n<6,
D,, 4<n<6, and G,. There apparently is no difficulty in
computing the inequalities for ranks n > 6 of any of the series
of Lie algebras. However, we have failed so far in our at-
tempts to derive the inequalities for F, and Ej.

A truly efficient construction of bases in large represen-
tation spaces irreducible with respect to a Lie algebra of high
rank cannot follow the prescription above as it is. Indeed it
would be impractical to write down thousands of basis vec-
tors. Fortunately, it is hardly ever necessary as we have
pointed out elsewhere.> It is advantageous to build the
Verma basis in subspaces ¥ (A; u) with z dominant and then
to transform it if necessary to other subspaces with weights
on the same Weyl group orbit using the “charge conjugation
operators” of Ref. 3. The result is a major economy of ef-
forts.

Finally let us compare the bases of Verma with the or-
thonormal bases of Gelfand and Zeitlin.** In the case of
g = A,,, a basis vector (pattern) of Gelfand—Zeitlin coincides
(up to a normalization) with that of Verma in the same space
V(A) only as long as the corresponding weight subspace
V (A; u) is one dimensional. When dim V' (A; u) > 1, the two
bases are in general different. The Gelfand-Zeitlin bases® for
representations of the algebras B, and D, are different from
those described here. There is no correspondence between
any single basis vectors. The basis consists of vector patterns
that are not eigenvectors of any Cartan subaigebra while
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those of this article are in the same way as in the case of 4,,.
That also is the reason why Gelfand—Zeitlin bases for repre-
sentations of the Lie algebras of the orthogonal group have
so far found only limited use in applications.

For completeness we present also the following beauti-
ful (unpublished) result of Verma;” namely a uniform way of
writing the basis-defining inequalities for a rank 2 Lie and
Kac—-Moody algebra of any type. Such an algebra is specified
by its Cartan matrix

[ _; "‘;], ABe{1.2,.}. (36)

We ignore the elementary case 4 = B = 0 of the nonsimple
algebra 4, X A,. Cartan matrices of the algebras of rank 2 of
this article are the particular cases of (34):4,(4 =B = 1), B,
or C, A=2, B=1), and G, (4 =3, B=1). The cases
A=B=2and A =1, B=4 correspond to the affine Kac~
Moody algebras. The rest are the Kac-Moody algebras of
hyperbolic types; there are infinitely many of them of rank 2.
Given an irreducible representation (m,,m,) of g, a gen-
eric basis vector of the representation space is of the form

"'f;’f:k—l ‘21‘ ?f?’ff'lmn»mz>» (37)
where the exponents a; take all the values within the follow-
ing inequalities:
0<a,<m,,

0<a,<m, + Aa,,

i B/Api_ 3 @a_api_s +m
0<az:_1<mm[a2,._2“ Pi—32 @y_2Pi_y 2]

Pi_a  A/Bp,_,
iz2, (38)
0<ay,
. [ Pi—1 ay_\NA/Bp;_ 1, +m2]
<minla,; _, : ,
VB/Ap; s Pi—1

The coefficients p; depend on the off-diagonal elements of
the Cartan matrix (34). Putting C = J4B, one has
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P12 = c
p= -1 +¢c?
P32 = -2 +c
pPa= 1 + 3¢? +ct
Psia= 3¢ — 4c® +c
py= -1 + 6¢2 — 5¢4 +cS
etc.
(39)
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It is explained, using only Lie algebraic means, how the modified-KdV-like equations arise. As an

example, the modified-KdV equation is treated.

I. INTRODUCTION

Some years ago, the Kyoto school (Date, Jimbo,
Kashiwara, Miwa, and others) explained how KdV-like
equations arise, in the context of infinite-dimensional Lie
algebras (see, for example, Refs. 1 and 2).

However, some aspects are not very transparent, in par-
ticular the construction of the equations. Kac® explained
how these arise by considering the g'-module
L(Ag) ® L(Ay). In the case of the KdV, z =4 (V. In this
paper is explained, extending Kac’s method, how one finds
the modified equations by taking a '-module L(A) @ L(A),
where, in general, A#A.

Il. THE ~-FUNCTIONS AND EQUATIONS

Let us start with two integrable irreducible highest
weight modules L(A) and L(A) over a Kac-Moody algebra
#(4). We assume that 4 is a symmetrizable
(n + 1) X (n + 1)-matrix and &' (4) is generated by ey,...,e,
and fo,....f ». We define @’ = [e;, f,].

The modules L(A) and L(A) are completely deter-
mined by their labels s, = (A,2)) and 5; = (Aa’).

Moreover, integrability requires that s;5,€Z, (see
Kac,® Lemma 10.1). The highest weight vector of L(A)
[resp. L(A)] is denoted by v, (resp. v,).

The principal gradation 6 of 2'(4) is defined by
6(e~,;) = —8(f;) =1, and the gradation 8§, of L(A) or
L(A) by b, (g-v,) = —8(g) [i= 1,2, 864" (4)].

From these two modules we form the 2'(4)-module
L(A)®L(A). The g'(4)-action is defined by

x(vew)=(xv)ow+ve (xw),
xeg'(4), veL(A), weL(A). (2.1)

In general this module is not irreducible any more. But we
know that it is completely reducible (Kac,> Corollary
10.7° ). Because of this, the submodule generated by v, ® v, is
irreducible. We denote this module by L, and we see that
Lyign =L(A+ A).

Further we introduce the following contravariant non-
degenerate Hermitian form H:

Hvew,veow')=H,(vw')  -H(wuw'), (2.2)
where H, and H, are the unique contravariant nondegener-
ate Hermitian forms in L(A) and L(A), satisfying
H,(v,,v;) = 1. Here H is (taken) linear in the second argu-
ment, antilinear in the first argument, and satisfies the con-
travariance condition

H(x uu') = — H(uwy(x) -4'), (2.3)
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where xeg’(4), u,u'eL(A) ®L(A),and @, is the antilinear
Cartan involution of ¢'(4) (cf. Kac,? § 11.5).

We define L ,,,, = L g, that is, L, is the orthocom-
plement of L, w.r.t. H. The contravariance (2.3) implies
that L, isasubmodule of L(A) ® L(A) under the action of
# (4). We clearly have the direct sum of submodules:

L(A)®L(A)=Lyy oLy, - (2.4)

Next weintroduce the 7-functions. Denote by G the group of
automorphisms of L(A) [or L(A)] generated by exp(zf;)
and exp(te;) (i=0,...,n, t€C). The G-action defined by
gvew) = (gv) ® (gw) is well defined in L(A) @ L(A). Of
greatimportance is the fact that g (v, ® v,)€L y;y, (8€G). We
denote 7, (g) =g - v, (i = 1,2). Thus we find

Tl(g)GTz(g)Gngh . (2.5)

The following consequence is our central equation.
Theorem 1:
H(ur (g)®7,(g))=0 (for all ueL,,, and geG) .

(2.6)

. HIROTA POLYNOMIALS

_We assume that we have a realization of L(A) and
L(A) as polynomials, where the conditions

L(A)=C[x®,jeE,], L(A)=C[x{",jeE,] (3.1

are satisfied, such that there exist p;, g;, c€g'(4) (ijeE )
with [p;,q;] = §; - ¢ (all others zero) and

3 )
D v = — @ , (3.2a)
! ax}"
g, - v =ax{” - v?, (3.2b)
c-v?=av'® and v, =1(eC[x?]). (3.2¢)

Here v eC[x? ] (arbitrary), aeZ, \{0},E, CZ \{0}.
We denote the subalgebra <p;, g;,¢> (i, jeE, ) by #, and
we see that the #-modules L(A) and L(A) remain irredu-
cible; applying ¢’s to 1 generates any element of C[x” ], and
applying p’s brings any polynomial back to 1eC[x‘” ].

In practice, we proceed from the other side.* Picking an
%, we investigate when the highest weight module L(A) is
irreducible as an #-module. Considering C[x‘’] as a
¢ (4)-module, the elements of 2’ (4) are represented by dif-
ferential operators of infinite order.

We make some more assumptions on .. We require

()= —8(¢q;)=i and wo(g;) = —(1/)p;. (3.3)
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Clearly H, and H, are then given by
H(P(x{” ),Q(x,“" ))

“7(Fap) 2
a (1)

So the monomxals form an orthogonal basis of C[x‘? ] with
square length given by

(i=0,1). (3.4)

0 _
x? =0

HGrllony = TGk
ji=1
In order to derive the Hirota polynomials, we introduce a
new set of variables by

2, =x{" +x{V, (3.5a)
2y, =x{0 —x{V. (3.5b)
One easily computes the action of % on L(A) ® L(A):
a
=—, (3.6a)
P ox;
g, = 2ax;, (3.6b)
The space of Hirota polynomials is now defined by
Hir: = L, ,nC[y] . 3.7

Now (3.6b) implies L ,,, DHir® C[x] and (3.6a) implies
L, CHire C[x],soL,,, = Hire C[x].
Hence we deduce for Q free and PeHir:
H(Q(x))P(y,), 7,(x%g) - 7,(xVig)) =0.
Using (3.4) and (3.5) this can be rewritten as

27 3)7 (%)

X(11(x; +;38) - T2(X; —;38)) [x=0=0.
y=0
As Qs arbitrary we find the following theorem.
Theorem 2;
F(‘l‘i) (Tl(xj +yj;g).'72(xj "J’j§g)) =0,
J a}’j y=0
(3.8)

for all PeHir and geG. We remark that 7; also might be an
element of some completion G of G; from an analytic point of
view, these 7; turn out to be more interesting.

IV. SOME EXAMPLES

One can wonder if there is anything left after the con-
straints (3.1)~(3.3). The answer is yes. Kac® describes the
following classes.

Class 1: Let % be the principal Heisenberg subalgebra
of an affine matrix X {, which is symmetric if X = 1. Then
L(A,) satisfies our requirements, so we can look at
L(Ay) ® L(Ay). (See Kac,® Chap. 14.) (In general, A, is
given by (A,,a)) =§;.)

Class 2: Because of the symmetry of 4 {*’, D {1, E{D,
E{V,and D {? |, we expect to remain irreducible as principal
Heisenberg algebra module:
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AN - L(A) (i=0,.,D,

DV - L(Ay), L(A)), L(A,_,), L(A),
E{P - L(Ay), L(A)), L(AS),

ESP - L(A,), L(Ay),

D, - L(Ay), L(A).

(Here we have enumeration like Kac,® Chap. 4.) Equations
correspondingto L(A) ® L(A), with A A are called modi-
fied equations. In the next sections we investigate 4 {*.

V. DESCRIPTION OF A{"
In fact we describe a realization of the derived algebra
AV =51(2,C) 0 C[tt "] 0C-c,

with generators e,=f®t, e, =e®t, =e®t !,
f1=f®t "' Heree,f, h form a Chevalley basis for s1(2,C).

We fix the bilinear nondegenerate invariant symmetric
form ( - | - ) onsl(2,C) by (h |#) = 2, and define the bracket
on4{"’ by

[g1®P(2),8,8 Py(1)]

= (81,8,1 ® P1(2)P,(2) Q‘l— Res (ddPl Pz) (81lg2)c

(5.1)
and
[c.g,®P(£)] =0
for g,,8,6s1(2,C), P,(1),P,(t)eC[t,t ~!].

Note that the principal gradation is given by (g ® #*) = k.
The principal Heisenberg subalgebra .% is defined by

=(e+f)et/,
g =/H(e+f)et ¢ (jeZ,,jodd).

One  immediately checks [p;,q;] =9, ¢
wo(g;) = — (1/))p;. In this case E, = {jeZ_, | j odd}.
For future use we define

=Yz '(4,8eth=Y 4,7,
ieZ (54

(5.2)
and

A(z)

i even,

i odd.

The homogenous components A; are elements of A {’’ with

6(4;) = — i. Moreover 4, (i€Z) and p,,g;, and c form a

basis for the vector space 4 {’. A short calculation shows
[P 4(2)] =224(2), [g,,4(2)] =2(z//NA(2).

(5.4)

- h
ith 4, = [ ’ 53
wi r (5.3)

—e,

VI. IRREDUCIBLE .-MODULES

We investigate for which A L(A) remains irreducible
considered as an .“-module. This can be determined by
counting dimensions. Let ¥;(1) denote all elements of
L(A) oftheformg - v, withd(g) = —jand v, the highest
weight vector, and let &/ (r) denqte all elements Qf #(A4) of
degree j in the gradation &, given by &(e;) =r,,
r = (7g...,7, ). By 1 we denote the vector (1,...,1). The fol-
lowing formula is valid:
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dim, L(A) = ¥ dim ¥;(1)g’
j>0
=H(l _qj)dim’aj(s+1)-dimp,(1) (6.1)
»1
Here ‘2(A4) is the Kac-Moody algebra belonging to
*A:*2(A) = g(*4). In the case of 4 {" we have ‘(4 {V’)
=g(4 V), as A {V is symmetric. Further s = (sg,...s5, ),
where s; = (A,a,’) as before. Formula (6.1) is Proposition
10.10 of Kac.? R
The irreducible .-module L(A), isomorphic to poly-
nomials in the variables x; (jeE, ) has g-dimension:

S dim V(1) - = [ (1 — g =75
Jj>0 j>1

(cf. Kac,? Proposition 14.5). Requiring irreducibility we
need ¥, (1) = ¥;(1):

(6.2)

dim ‘g, (s + 1) = dim g, (1) —dim &, (1) (>1).

(6.3)
In our case
1A§1)=A§l),
. 2, jodd, ) [l, j odd,
(1) = F.A(1) =
dim g, (1) [l, j even, dim .7 (1) 0, Jj even.

That is, we need dim g;(s + 1) =1 (j>1). In particular
dim &, (s + 1) = 1. We have two cases:

50>0 so=0

1: { 0T ) [ N

s,=0, 5,>0.
Applying to dim g,(s+ 1) =1, we find so,=1 (resp.
s, = 1). These values satisfy (6.3). They correspond to A,
and A,, respectively. We can describe these representations
completely. First by (5.4) we find

1 _, d
{A(2) = g, exp2 z"”) (—2 Lz )
o{d(z))=a exp( j; x5 Jexp ;]_ z peO
(6.4)

where o; is the representationon L (A, ) and a, is determined
by A; (i =0,1). We have

ay = —hel+i, ay=hol+]c

(6.5)
or
c=a) +a), Ay=hel=ia’ —ay). (6.6)
So we find o,(c)-1=(A;c)-1=1 (i=0 or 1) and
0;(4,) - 1 = (A da) —lay ) =a; - 1. Therefore,
g(c)=Id (e=1) and gy= —}, a;=1\.
(6.7)

Vil. THE KdV HIERARCHIES

Kac® shows that the Hirota polynomials belonging to
L(Ay) ® L(A,) lead to the KAV hierarchy. It is clear (for
example, by taking 4, .., = —4;, which simply leads to
a, = —}), that L(A,) ® L(A,) has the same Hirota poly-
nomials. There are two cases left, L(A,) ® L(A;) and
L(A;) ® L(Ay), which are also essentially the same. We
pick L(Ay) ® L(A,), and start to count the g-dimension of
Hir:
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dim, Hir= ¥ dim H, - ¢ (7.1)
70

(where H; consist of the elements of Hir of degree j). More-
over we have

dim, L(Ao) ®L(A,) = dim, L(A,) - dim, L(A,)
=H(1_q2}—l)—2,
>1
dim, Ly, = dim, LA+ Ay)

(7.2)

=[[a-#-H2[[A-¢*"D, (13)
>1 1

s0
dim, Ly, =[] (1 —¢*~ 1) 2%. [1 —11 (1 —q*’")} .
1 »
(7.4)
By L, = Hir® C[x], we have
dim, Ly, =dim, Hir-JJ (1 -¢¥~ )", (1.5)
BI
s0
dim, Hir =[] (1 —q’f“‘)“[l —H (1 —q""z)] .
1 >
(7.6)
The g-dimension of the modified-KdV hierarchy has been
calculated also by Sato and Mori.®

From (7.3) one calculates the g-dimension of
Constraint: = L ,,,nC[y],

dim, Constraint = [] (1 —g¥—H! Jra —g¥-?y,
7>1 1

(1.7

and one finds Table L.

Of course Hir and Constraint are for each degree com-
plementary orthogonal subspaces of C[y].

The easiest way to calculate Hir seems to be to calculate
Constraint first and then to take the orthocomplement. This
is explained, and done in the Appendix for degree <5.

We consider Hir, and Hir,, the subspaces of Hir of de-
gree 2 and 3. They give rise to the following equations:

Dir(x +y)1(x = p))|,=0 =0, (7.8)
(D] —4Dy)(ri(x +1)72(x —p))—0 =0. (7.9)

Remember that 7, and 7, both satisfy the KdV hierarchy.
We put

2 a 2]

u=2 logry, and v=—Ilogr,——Ilogr;.
ox3 ! ax, B2 dx, g1

(7.10)

TABLE L. Dimensions of C[y], Hir, and Constraint.
Degree 0 1 2 3 4 5 6 7
Ciy] 1 1 1 2 3 4 5
Hir 0 0 1 1 1 3 4
Constraint 1 1 0 1 1 1 1 1
G. Post 680



Writing out (7.8) and dividing by 7, - 7, yields

ﬁ_zﬁ.i i: (where':-—:.i)

T T, Ty Ty x, Jx
Using

s (B) 2% 5 (1Y

T2 T, T 1

and

v 9* log 7. —iu—r—g—(ﬁ—)z—iu

> 2 T, T, 2’
we find

Ju+ v+ (v, i) =u+v, +0*=0, (7.11)
the Miura transformation.

With the same kind of manipulations, and with the use
of (7.11), Eq. (7.9) leads to the modified KdV:

4, = v, — 60,7, (7.12)

where t = x; and x = x,.

APPENDIX: CALCULATION OF HIROTAPOLYNOMIALS

Calculations can be done by using the definition of L,
and Hir:

Hir = {P()|H (g LLP(»)) =0, for all geU(y'(4))}.

(A1)
We choose the following basis for U (¢'(4)):
qﬁl-...qf- AP AS ATl
wplt - A A AG T (A2)
Then we find that
& gPA% . .A2A% .1 span L(A,) @ L(A,).
(A3)

We carelessly do not write the representation.

Working in this “basis,” (A1) reads

Hir = {PO) |H (¢} ¢? - A A" - 1,P(y)) =0} .

(A4)

Moreover we know wy(g;) = — (1/i)p;, but p;(P(y)) =0,
soin (A4) we can take 8, = --- = f8; = 0, and there remains

Hir = {P(y)|H(A ;AT - 1LLP(y)) =0} . (A5)
From now on we take homogenous polynomials P(y) of
principal degree ||a|| = @, + 2a; + -+ + m - @,,, all other
constraints in (AS) already being satisfied.

Using (6.4) and (6.7) the action of 4; on
L(A,) ® L(A,) is given by

1 J
4,=5 3 {0 (-255)
F]
—p o (-2 )] (46)
where p; (x) denotes the Schur polynomial fixed by
S ()2 = exp(szj_ Z4 l) (AT)
o1
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and

J ( g 1 d 1 4 )
ax(‘) axgi) s 2 axéi) ’ 3 axgl) g .
We are only interested in the components in C[y] of L

and L, , which we called Constraint and Hir. But, in gen-
eral,

ATmd 1= EB: PQ(), xF =t (A8)

generates components outside Constraint, namely these
parts of (A8) with 8 #0.
But

L ey = Constraint ® C[x]

so that all polynomials @y (y) arein Constraint. We are only
interested in the Qg (y) with degree |||, this is Q,(y). We
write

AreAT  1~Q(y)

where Q, is found by the following substitutions in (A6):
a0V —2p, X052,

F ] F] F]

2% @ Ty,

which exactly cancel all terms containing x.

We calculate the Hirota polynomials of degree <5: de-
gree 0 and degree 1,

degree 2,
Hir, =Clyl,= (1), Di(r-7) =0;
degree 3,
245 1~p3( —2p) —p3(2) = — P} — 4y,
Hir, = ()} — 12p;), (D3 —4D,)(7,-7,) =0;
degree 4,

b

Ay Ay 1= =245y~ —p3( =21 — P (=)
+ 23 (29)y1 + pa(29) =4y — 4103,

Hir, = (31 + 24y, ;) - (D} + 8D, D) (7, - 7,) =0;
degree 5,

245 1~ps(—2p) —ps(2y) = — &vi — 81y — 4y,

Hirs = (3] + 2451y o1 + 805) ,

(D3} +8D%D,)(7;,-71) =0,

(D3 +16D5) (1,-1,) =0.
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Some integrals involving three modified Bessel functions. |
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Theintegrals f& ¢ ' *#I, (at)K, (bt)K, (ct)dt and 53t ' ~ I, (at)K, (bt)K, (ct)dt arecalculated
with the help of the factorization properties of the Appell function F,. Results are given for real
parameters a, b, ¢, both when they are and are not in a triangle configuration. '

I. INTRODUCTION

Few results exist for integrals of products of three Bessel
functions. A formal expression is the well-known formula'

r’ t*= 10, (at)d, (b1)K, (ct)dt
0

a'“b”
cﬂ+y+v
T(A+u+v+p)/QU((A+p+v—p)/2)
C(u+DT(r+1)
Atp+vip A+pu+v—p
2 ’ 2 ’

=2/1——2

X

<&

2 2
ety -% -2 (L1)
c c
for a complex a, b, ¢ (parameters) and A, u, v, p (indices)

provided that

Re(A +pu+v+p)>0, (1.2)

Re(c + ia 4 ib) > 0. (1.3)
Here F, is the Appell function® that is defined as a double
series inside the domain |a| + |b | < |c|. Other integrals may
be obtained using linear combinations of Besse! functions.

The practical interest of (1.1) is small as the double
series is difficult to handle. Moreover, condition (1.3) is of-
ten too restrictive; for example, integrals like

J‘m t*=\J, ()], ()], (ct)dt (1.4)
0

or

f t* = 1K, (a)K, (b)K, (ct)dt (1.5)
0
exist for any real (positive) a, b, ¢, (and real A, u1, v, p) but
the result cannot be reached easily by (1.1) as very little is
known about the analytical continuation of F, (see Ref. 3),
in particular when a, b, c may be considered as the sides of a
triangle.

In two recent papers,** we showed that for real (positive)
a, b, c andreal A, u, v, p, integrals of the form (1.4) may be
calculated by analytical continuation of (1.1) when the func-
tion F, factorizes into products of hypergeometric functions
2F; of one variable only; the nonanalyticity of ,F, is easily
controlled as it reduces at most to a cut along the real axis. In
this article, we extend the method to some integrals involv-
ing two K functions and an I function (and consequently to

* Chercheur Centre National de la Recherche Scientifique.
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some integrals with three K functions). Again
a,b,c,A,u, v, pare real.

Factorization possibilities for F, are listed in Refs. 1 and
4. Two factorizations are required for each integral; the inte-

grals that can be calculated reduce to four.

(i) fow t' 2L, (an)K, (b1)K, (ct)dt (1.6)
(a<b+ec, 1+pu—|v|>0).

(ii) f: t'="I, (at)K, (bt)K, (ct)dt (1.7)
(a<b+ec, |v|<]).

(iii) Setting 4 = — v in (1.6), we deduce

Lm t'K, (a)K, (b1)K, (ct)dt, (1.8)

anyreala, b,¢>0, —1<v<i,

an integral that appears in the calculation of universal
numbers in polymer theory.® Its calculation was our first
motivation for this work.

(iv) f ” I, (anK, (b)K,, (ct)dt, (1.9)
0

a<b+ec,

for any real u, v, p (here A = 1).

Integrals (1.6) and (1.9) were obtained by Bailey’ for
¢>a + b. We give here the complete results for (1.6)-(1.8)
both in nontriangle and triangle configurations. As to inte-
gral (1.9), it is also possible to reduce it to a sum of products
of hypergeometric functions ,F,, but the expressions are sim-
ple only when 4 = 4 v and a = b. Calculations differ in
detail but are similar to those of Ref. 5 and will be givenin a
forthcoming paper.®

This article is organized as follows. In the main section
(Sec. II), we derive (1.6) in the nontriangle and triangle
configurations. Integrals (1.7) and (1.8) are more briefly
calculated in Sec. III. Results are collected in Tables Iand I1.

Il. CALCULATION OF INTEGRAL (1.6)
We use the definitions

K, =(n/2sinmv)(I_, —1,), wvisnotan integer,

(2.1)
I,(x)=e " J, ("),
to rewrite the integral
Z, =f t' AL (a)K, (BHK, (ct)dt
(]
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as
Y# —_ 5 Si;:w J(; tl+ue—l'p1r/2JM (eiﬂ/Zat)
X [eiwr/2 J_v(ehr/2 bt) _ e—iwr/2 Jv (eiﬂ/z bt)]
XK, (ct)dt,

or, from (1.1) and provided that separately each integral has
a meaning (i.e.,a + b<c),
T 2¢g* [(c)"I‘(1+,u—v)

* T 2snmvt#I\b/) T(l—v)

><F4(l +tultp—vl+pu,1—v

a b_z). _(L)”Mj_v)
e 2/ c I'(l+wv)

2 2
c C

__ 24g* [T(14+p—v)
2sinmv 2+ T(1—w)

O

XZFI(I +pu—v1l+uyl—v —%)
__(i)vr(l +”+V) (l_x)l+#+v
c r'A+4v)

XzFl(l +u+v, 1+l 4+v, — }’(11 —;))]’
2.2)
where we took into account the factorization of F, (see Ref.

1)
F4(a,ﬂ; l+a—-85; %

1-x)(1—y)" (1—=x)(1—yp)
= (1 —y)"zFl(a,B; l1+a—p _M)

1—x
(2.3)
Parameters x, y are given by the transformation
o x g _ y _b
(1-y»U-x) &  (A-x)1-yp)
(2.42)
or
x=b2+a2—c2—4z y_b2+a2—c2—43
2b ’ 202 ’
(2.4b)
where
4A =52 (2.4¢)

§=[(b+a)—1(b—a)* -2, (2.4d)

and 8"/? is the positive determination of the square root so
that x, y go to zero for large c.

A. NONTRIANGLE CONFIGURATION: ¢>a + b

We introduce the hyperbolic “angles” u,, u;,, 4. and
the “area” A such that
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?=a*>+b%+2abcoshu,,

a*>=b%+ ¢*—2bccosh u,, (2.5a)
b%=c*+a*> —2accosh u,,
U, =u, +u,, (2.5b)
K:;absinh u, =4 bcsinhu, =}casinhu,. (2.5¢)
Then,

1—x=(c/b)e™ ™,

1—y={(c/a)e ™,

y=(e/a) (2.5d)

—x(1=p)/(1 —x) =e*,
—p(1=x)/(1—yp) = e

and expression (2.2) is rewritten as

T Wa [F(l+‘u—1’)e—u¢(l+y—v)
2sinmv (be)*t! | ra—v)

X Fi(l4+p—v,14u;1 — vy e~ 2y

L, =

'(l+p+v) PETRCERRS
L(l1+v)

XzFl((l+#+v,'l+,u;1+V;e'2“")}. (2.6)

The main point is now to reduce the hypergeometric ,F, to
Legendre functions-outside the cut. Formulas may be found
in Ref. 9. We use successively

~wi+pgn LA +pFV)
RER))
1Fve )
- (e—ivr(/t+ 172 )/‘/;)2— l/2—p(sinh u)~ 172 —u

172
XQ** 5%, (cosh u),

172
“4)5%, (cosh u)

i+ 1/2) [

e Fi(M+puFv, 1 +u;

(2.7a)

=Tr_¢
2 sinw(u+1/2)
_F(/‘ v+1)P—y—1/2(coshu)]
r( —p :F ‘V) v—1/2 ’
and, after some manipulations,
_1 1(_(1_)” FA+u+nTA+p—v)
#24 2 \be be
X (sinh u,) ~#~ 2P 7+~ 1"(coshu,),
to be compared to a similar result for f ¢!+ #J,K, K, in Ref.
10. In a more symmetric way, using (2.5c), we get

z _2—2;4—2 i(abc)“
L 2 Aw+1

XT(1+p+v)T(1+pu —v)(sinh g, )*+ 2

P+ 172(cosh u)

(2.7b)

XP 7 *,"*(coshu,) 2.8)
[K =} bcsinhu,, seeEq. (2.5c)].
For u = — v, Eq. (2.8) becomes
A. Gervois and H. Navelet 683



o =z R
- 2/ (abe)”
XT'(1 —2v)(sinhu,)?~"P%~ 12 (coshu,).
(29)
Both results (2.8) and (2.9) are written in Table I, lines 1
and 2.
Reésult (2.8) seems very far from that of Bailey,” which
is written with the help of artificial angles ¢, ¢, and . Setting
a=c'sinhg, b=c'sinhg, c¢=c coshg coshdg,
we get
coshu, = 1/tanh ¢, sinhu, = 1/sinh ¢.
The P Legendrefunctionis turnedintoa Q function, with the
help of the Whipple formula,’

—u—1/2 —im(v+ 1/2)

1 i
‘”"”(nm:p)‘ F(l+p+v)

X /-12; sinh $Q, (cosh ¥),

and we get the final expression

cosh? 1///2)"+ 'T(14+u—v)
cosh? ¢ citH
e~ "™Qr (cosh 9). (2.10)
It differs from result (3.5) of Ref. 7, where ¢ ~ ™ is replaced
by sin un/sin(g + v) . The result of Ref. 7 corresponds to a
nonstandard definition of the Q,, (Barnes notation, See Ref.
1.
Notice that results (2.8)-(2.10) hold when going to the
limit where v is an integer.

#, = 2*(sinh ¢p)"(

B. TRIANGLE CONFIGURATION: (2 — b| <c<a+ b

Now, the integrals § ¢'*#I, I K, do not separately
converge, but their difference does. As the result is an analy-
tical function of parameters a, b, ¢, the expression (2.2) has
an analytical continuation in the region |a — b | <c<a + b,
which can be obtained from that of the hypergeometric se-
ries. In other words, the two hypergeometric

2F1(1+#$v,1+ﬂ;13Fv; —yii;_;;)

still exist although they no longer correspond to any integral
! *#1,1, ,K,. They are now complex quantities but their
difference, which remains proportional to integral (1.6), is
real.

Parameters x, y defined by (2.4a) are now complex
numbers

(P 2 4 2
x=(b*4+a%>—c*—4iA)/2b3, (2.11a)
y=(b2+a>—c*—4iM)/2,

where
A=y (2.11b)

is the positive determination of the square root.
Introducing the angles ¢, , @, . and the area A of the
triangle,

a’>=0b?%+c*—2bccos @,,
b%=c? + a* - 2ac cos @, (2.12a)
?=a*+b*—2abcos @,
T=@, +¢b +¢c’ (2'12b)
A=Jlabsing, =}lbcsing, =}casing,, (2.12c)
we have now
1 —x = (¢c/b)e” %, = (c/a)e™ ",
(c/a) (2.12d)
—x(1—y) — o2 —y(1—x) P
1—x ’ 1—y ’

and the analytical continuation of (2.2) is

¢ T 2"0"(_(.'_)‘+"[F(1+y—v)
o 2sinav 2+2\b r(l—w)

Xe PUTE U+ pu—vl +ml —v; e~ 29
_&i/‘_'”)_e_
L'(l+v)

+ 21«*,(1 +u+vl4+pl+y e“”%)]. (2.13)

i@a(l +p +v)

TABLEL List of the integrals calculated in the paper for ¢ > @ + b. The P -#,'*(cosh u) are the Legendre functions outside the cut; a, b, ¢, A, u, v, pareall

real.

F+p+vI(1+u—v)

ST

f AL (@K, (DK, (et)dr =272
(]

Lﬂ ' (aDK, (BOK, (ct)dt = 2"*2\/—2_’-’: rda-— 2v)
'

Kzu+|

Jw ' (a)K, (BN)K, (ct)dt = 2""2\/§1"(1 —2v) —'{( oy (sinh %.)'2~*P7Z /3 (cosh u,) — (sinh #,)"*~*P,= 13 (cosh u,)},
o a

J“=° t' K, (a)K, (b)K, (ct)dt
0

T 2v 1
= -.—22”_3 I‘(l —21/)
sin v (abe)¥

(abe)#(sinh u, )+ 2P ~# - 2(coshu,), 14pu—|v|>0;

(slnhu )1/2 VPV ln(coshu )1 V<iy

v <1;

X {(sinh u,)‘”“‘P:: 12 (cosh u,) + (sinh u, )2~ *P}Z /3 (coshu,) — (sinh u,)*>~*P%= 132 (coshu,)},

v#£0, —l<v<y;

A=d*+b*+2b coshu, b>*=d’+c—2accoshu,, =52+ —2bccoshu,, u, =u,+u, A=}absinhu, =}b sinhu, =jcasinhu,.
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The following proceeds as in Sec. IT A, with some sup-
plementary care as we deal with complex numbers. We indi-
cate some intermediate steps for
e~ WL F (14+pu—v;1 —v;e” %), which we in-
tend to express in terms of the Legendre function on the cut.
Again, all formulas are in Ref. 9. We have successively

e #UHE— F(l4+pu—v14pl—ve %)
=[O R tp =y 1+ 1= v 0],
(2.14)
where * denotes the complex conjugate, then®
Fi(l+p—v14+p1—ve)
=T(1 —v)e*?(1 — )~ 1~#P"_ ,_, (icoty),

where the argument of (1 — %) is ¢ — 7/2, then'?

—u—172

i-u (zcot:p)
—— Q@ ~k= 5 (cosp —i0)
9

lﬂuem/4
—_ S
F( — i —v)
and

—v- l/2 (COS¢ io)

= o—limr2 /4 172
e (D= Q Z4 7172 (cos @)

+ (in/2)P Z4Z 2 (cos @) ],
where the last two functions are Legendre functions on the
cut. We have the intermediate result
F(1+uFv) o= @1 +uFY)
'l xv)
XoFi(l+pFv, 1+ 1 Fv, e 2#)

= r(l+ﬂq:EV)) (2sin¢)—l—y isin¢ e—lﬂ'(y+l/2)

X [Q F4= 172 (cos @) — (im/2)P 34 =73 (cos @) ].
(2.15)
The difference (2.13) may be rewritten only in terms of
P ;#7,'”> by using all the relations® between P 2%~ 172 and
(4] ;;';: ,‘2 As expected, the imaginary part disappears and
we finally get

TABLE II. The same as in Table I for a triangle configuration (ja — b | <c<a + b). The P [ #7,

e 1 i1“(1+,u—V)1“(1+,u+V){_a_)'u
#22 be \be

X (Sin¢ )—1/2 qu~,u721/2(cos ¢a)

Z, =2_2"_2\/£I‘(1 +u—vT(1+u+v) (abc)”

A+l

XP 7 E7,2 (cos @, ) X (sin @, )2 HH, (2.16)
and, foru = —v,
172 2v—1
f,v=22V—2(1) r—amd
2 (abe)”
XPyZ 15 (cosp,) X (sing,)?~". (2.17)

These formulas are very similar to the ones obtained for the
nontriangle configuration [Egs. (2.8) and (2.9)] and are
reported on lines 1 and 2 in Table I1.
Result (2.17) can be checked in a different way. Ex-
panding I _  (at), we have
P I B B
meom! T'(l4+m—v)

L 2m—v
xf (% t) 'K, (bt)K, (ct)dt
0

1 1 1 be 2m

2 zom' l"(l+m—v)( )(7)

XF(1+m)F2(l+m—v)F(l+m—2v)
I'(242m—2v)

2
X2F1(1+m,1+m—v;2+2m—2v;1—b—2)
c

(see Ref. 9, p. 101). Now, with duplication formulas'?
'(2m —2v+42)
= (I/Nm)22" =+ T(m —v 4+ HI(m + 3 —v)
and
b2
2F1(1 +ml4+m—v;24+2m—2vy;1 ————)

c2

#72"/*(cos u) are the Legendre functions on the cut.

(abc)*

f t'+“I,‘(at)Kv(bt)Kv(Ct)dt=Z‘M‘zﬂr(l+'u+v)I‘(1+,¢_.1/) AzuH(S“‘"’ PHVRP =8=12(c0s ), 14p— |v]|>0;
0
o0 2v—1
J; 1'-“I_,(at)K.,(bt)K,(ct)dt=2"’—2\/§r(1“2") (Aabc)”(sm¢ YW2-PI=12 (cos @) v<;
o 372 _ 2v—1 A1
f t"’I,,(at)K,,(bt)K,(ct)dt=(1) p-in LU2=v) A™7 4o Zr(1 - )
o 2 T (abe)” (abc)”
X{(sin@,) 2~ "PZ 13 (cos @,) + (sing. )Py (cos @)}, |v|<];
' 2v—1
f 1=K, (anK, (bOK, (ct)dt = —(1) Ppr-1n T2 —v) AT
o 2 wsinmv  (abc)”
+§T77722V-3\/-r(1—2")( {(snup Y2=*pr=12 (005 g, )
_ + (sin @, )~ "PyZ 12 (cos @) + (sing@. )2 ~"PYZ i (cos @)}, v#£0, —l<v<y
a=b2+cF—2bccosp,, b =c+a*—2accosg,, c=a*+b?—2abcosg,,
T=@, +@ +¢, A=}absing =]bcsing, =}casing,.
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b —2—2m 1 1 3
=( ;c) 2F,(m+1,v+—i--; XF,(I;I—Zv,v+7;7—v;
i+m—v-(b_c)2), ( a )2 (b—c)z)
2 b+c b+c/ ' \b+ec//
we get where F, is the first Appell function.” For these peculiar
72 (bey values of indices, F, reduces to a hypergeometric>7>14
” b+c)? (;) T fp
oE R )
5 =, l"(l+m)l"(l+2m—2v)( a )"’ 2°2 b+c b+c
— 2 —
2o mbm+i—v)  \b+c = 8ED p(11-2m 3y £
1 3 b—c\? 4bc 2 4bc
><2F(l+m,v+——;—+m—V;( )) 2 1—
_ 7> (gc_)v C(1—2v) ¢
(b+¢)? r'3/2—v) and the link with P2~ 172 (cos @, ) is now straightforward.

Ill. CALCULATION OF INTEGRAL (1.7)
The proof follows the same scheme as above. Splitting K, (b7) into two terms I , , (bt) for ¢ >a + b, we get

= 2-*[fa) 1 @ b?
M, =| ' (@)K, (K, (ct)dt = —= —(—) —— —F (1,1— 11—, 1 )
v J(; V(@K (BOR, endt = 2= \3) T+ R e

ab\ 1 a? b’)]
(cz) L(v+1) 4( tyity +vc2 2

T_2" ! ( )zFx(,l—V;l+V;—x(l——y)-)

_2smm'c2 *IT(v+1) 1—x

_(';‘zz_) (1=x)(1=y)F (L1 =% 1+, xy)],

where x, y are again given by (2.4)-(2.11).

{

where x, y are again given by (2.4)-(2.11). B. When |a — b|<c<a+ b
We have
A.Whenc>a+b g
T
We have " 2sinav T(v+1)
, = [ )e * X[i(ﬂ)ve_%zﬂ(l,I—V;l+V;e_m")
" 2sinav T(v+1) lac ac\b
XoF(1, 1= v 1 +v;e” ) + l ﬂ)v[e"""‘
5 ab\ ¢
a - u, — 2
- — < Ll—wv14ve ‘)],
ab( ) ZFI( 1 X F (L, 1—v; 14+ v;e_m°)]"'}, 3.3)
3.1)

where [ ]* meansthe complex conjugateandg,, ¢, , ¢, are
'where theu,, u,, u. are again the hyperbolic angles defined  the triangle angles, Egs. (2.12). Setting u = — v in Eq.
in Egs. (2.5). The hypergeometric are rewritten by meansof ~ (2.15) (with lower sign) and expressing @ 7~ /2 in terms of

relations (2.7) for y = — v (and the lower sign). Whence, P %21/ only, we get

after some easy calculations e—®
A1 ———F(L 1 —¥ 14+ ve” %)
/v=(1) pv-ap(p — oy A T+ 2!
2 (abc)” v—1
—_ 2 (Sll'l )v—l 1511'1 Pv—llz(cos )

X {(sinh u,)">~*P2 =12 (cosh u,) T T sy R 5 Sng Buiz(cosg
— (sinh u, y2- i S 1/2(003hub)} (3.2) i e’Wf\/; (sin¢)2""

which is reported in Table I, line 3. "2 cosvr '(v+1/2)
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M =(1)3/22_1/2_,, (172 —v) A1
’ 2 L (abe)”
12 2v-—l
— (1) 22v—zl-\(l _ 21/)
2 (abc)”

X {(sin @, )>~"P} /3 (cos @, )

+ (sing,)*~"P,Z {3 (cos @)}
(see Table II, line 3).

3.4)

C. We end with some remarks

(i) Results (3.2)-(3.4) hold too when v goes to an in-
teger value (actually v =0).

(ii) For v =0, §§ tly(at)K,(bt)Ky(ct)dt may be cal-
culated either with .# or .#,, which gives a consistency
test. Setting v = 0in (2.9) and (3.2), we have to verify that

Jsinhu, P Z/3(coshu,) = [sinh u, P ~ 1/ (cosh u,)

—/sinh u, P ~ 12 (cosh u, ).

As in Ref. 9 P ~12(cosh u) = 2/7(u/\Jsinh u), we get
u, = u, — u,, which is precisely Eq. (2.5b). Similarly, set-
ting v = 0in (2.17) and (3.4), we have to check the relation

\/sin @, P -1 (cos@,)
— \sin@, P /3 (cos @,)
—\fsing, P ~12(cos @.) + 2.

1/2
(cosp) =

we get condition (2. 12), ie,@, +@, +@. =7
(iii) Collecting results of equations (2.9), (2.17),

As

687 J. Math. Phys., Vol. 27, No. 3, March 1986

(3.2), and (3.4), we get the last integral (1.8), which is
reported in Tables I and I, lines 4. Formulas do not hold for
v = 0 as we introduce a singular factor (sin vr) ~!, but it is
easy to verify that the numerator vanishes too (see above),
so the result is finite. We should get the linear term in powers
of v and with this method, we need the derivative of P
relative to indices for o = 0, — 4. The calculation is possible
but is complicated. It will be given elsewhere.®
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Some integrals involving three modified Bessel functions. Il
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Theintegrals {5 Z, (at)K, (bt)K, (ct)dt, where Z, = I, K, , are calculated, with the help of the
factorization properties of the function F,. Results are given for real parameters a, b, c both when
they are and are not in a triangle configuration. Some generalizations using derivation with

respect to the parameters are considered.

I. INTRODUCTION
In a companion paper,’ using the formal resuit?

r’ t* 7L, (a)I, (b1)K, (ct)dt
(o

_gi-2 a*b” T(A+pu+v+p)/2)

AtrHty r(#+l)
><l‘((/l +p+v—p)/2
rv+1)
xF4(’1+”+V+P,’1+”+V_P,
2 2
a b?
#’+11V+1;;;"CT): (1-1)
with
Re(A +u+v+£p)>0, (1.2)
Re(c —a —5)>0, (1.3)

we showed that some integrals of the form
f t*~'Z, (a)K, (b)K, (ct)d,
0

(1.4)
Z,=1,K,,

can be explicitly calculated when the Appell function F, (see
Ref. 3) factorizes into functions of one variable only, actual-
ly hypergeometrics ,F,. The purpose of this paper is to com-
plete this study.

The main remark is the following: when F, factorizes
into hypergeometrics ,F}, it is possible to perform its analyti-
cal continuation outside region (1.3)—expect at most for a
cut along the real axis—to calculate integrals derived from
(1.1), even if (1.1) itself does not converge. Such consider-
ations were used in the calculation of integrals of the form
S&dtt*='J,J,J, dt,whenIm( +a + b + ¢) >0 (see Ref.
4) and were used in Ref. 1 to get §&° dt¢' +#I,K K, in the
region ¢>a + b and (@ — b) <c <a + b, though separately
each integral f&¢'*#I, I K, dr does not exist. The most
interesting situation for applications corresponds to the case
when g, b, ¢ are real and may be considered as the sides of a
triangle, i.e., |a — b| <c<a + b. Notice too, that, up to a
proportionality factor (2/im)exp((in/2)(A + u + v — p)),

*) Chercheur Centre National de la Recherche Scientifique.
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integrals f¢*~ ', I K, dt and fgt*~'J,J H " dt coin-
cide when they exist.

The factorization cases for F, (see Refs. 2-4) can be
divided into two classes: (i) A =2+, v= + p, which
leads to the calculation of

f det'"*I K K,, f t'-1_ K K, dt,
0 0

f t'""K K K, dt
(]

(see Ref. 1); and (ii) A =1, any y, v, p, as
Fya,B;7,7; X(1-Y), Y(1 — X))

=2Fl(a9ﬂ! Y;X)ZFl(a’B, 7/’ Y) (1.58.)
whenever
a+B+1=y+7y. (1.5b)

This formula derives from the finite summation by
Burchnall and Chaundy’,

Fa,B,7,7;X(1-7),Y(1 - X))
_ & (@),B), (@a+B+1—-y—7),
S ., A
XY X  Fila+rB+ry+nX)
XFila+nB+ry +rl),

when

a+B +1=y+y —n,

and the same considerations may apply.

In the present paper, we study factorization of class (ii)
[Eqgs. (1.5)]. We assume that the parameters a, b, ¢ and
indices u, v, p are real though this restriction is probably
not necessary. In Sec. I1, we study the transformation (a?/
c%, b*/c*) — (X, Y) on the parameters and give the expres-
sion for the general integral (1.4).

In Sec. III, we derive formulas for special values of in-
dices (u = + v or v =p) following Ref. 4, with comple-
mentary results when a = b or b = ¢ (*“isosceles” case). In
Sec. IV, we use derivation with respect to the parameters to
get integrals where ¢ + 8 + 1 —y — ¥ is increased by
1, 2, ..., n units, generalizing formula (1.6b) to positive and
negative integers. We indicate some other results coming
from derivation with the integrals of Ref. 1.

Results are collected in Tables I-III. The cases when
two lengths are equal (a = b or b = c¢), which are of some
interest in physical situations, are given in the Appendix
[formulas (A1)~-(A3)].

(1.6a)

n integer, (1.6b)
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Il. GENERAL FORMULAS

From K, = (7/2sinmv)({_, —I,) and using (1.1), we get

® » 1 e\ D1 +p—v+p)/QT((1 +u—v—p)/2)
L (an)K,(bt)K, (ct)dt = ——— 2 [(—)
J; w (@K, (6K, (ct) dsinv 't T(1+u) \b r'a—w)
l4+pu—v+p l4+u—v— a> b?
><F4( '”2 L, 3 'D,l+,u,l—v,—c;,—c2

b

_(i)'" N(l+p+v+p)/ T +u+v—p)/2)

l+u+v+p

l+u+v—p

T'(l1+v)
Ap1+3Z

b

><F4(

providedc>a+b,1+pu — |v| —p|>0
The factorization property (1.5a) reads

2

’ l’.f.)]
2 2’ )l

_ 2 72
F4(l+y:2FV+p) 1+'u1:v p’l+/“’1:|:v;g;’_2)
(4 (4
=oF(FELEVAL IHBEVIP gy x)p(LieErbe 1RREVop 5, )

where X, Y are such that

2

X(1-Y)=d*/? Y(1-X)=b%/c, (2.1a)
with the asymptotic condition
X, Y—>0, whenc— + . (2.1b)
Rewriting
Fi(EEEEe IEREVP k)
2 2
as -
(l—X)i"2F1(1+’u:;V+p ’ 1+,u;2tv—p , 1+#’X)’
and after some transformations, we get the final expression
© 1] d p—
f 1@, (0K, (cydt =220 D +p+v+p)/ A1 +u+v—p)/2)
o vl AT *(p+ 1)
xr(l+u—v+p)r(l+p—v—p)
2 2
2 2
X2F1(1+p;-v+p ’ l+,u;—v—p ,1+,u;1—Y). 2.2)

This result was already obtained by Bailey,® for
¢>a + b again, with the correspondence a = ¢ sin ¢ sin ¢,
b =ccos @ cos ¢ (and X = sin’ ¢, | — ¥ = sin %p).

The main point is that this result is still true when
¢ <a + b, actually when

la—b|<c<a+b, (2.3)

i.e., when a, b, ¢ may be considered as the sides of a triangle
(“triangle configuration) as 5 [, K, K, dt is an analytical
function of variables a, b, ¢ and exists when (2.3) is fulfilled,
although separately (5° 1,1, ,K, dt does not converge. The
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|
integral is obtained by analytical continuation of the func-
tion ,F,, which exists everywhere but (at most) on a cut. In
the same way we can get f5°K, K, K, dt for any real positive
a, b, ¢, though 37, , K K ; dt does not exist when
c<la—b|.

It remains to give explicit expressions for X, ¥, both for
c>a+b and |a—b|<c<a+b. The case c<|a—b]|,
which appears for the calculation of f3°K, K, K, dt, is not
necessary because of the symmetry of the roles of ¢, b, c and
H# v p-

Equations (2.1) are rewritten as
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X=(a®*+2—-b%—6)/2,

Y= (b +c*—a?—6)/2c%,

S=a*+b*+c*—a*h>—b*® - ?d,
where /8 denotes the positive square root when c>a + b

and 8 = i — 8 in the triangle configuration. We rewrite
(2.4) using angle variables.
Ifc>a+ b, we set

?=a’+b*+2abcoshu,, a*=b>+c*—2bccoshu,,

(2.4a)

(2.4b)

b?=a* 4 ¢* — 2ac cosh u,, (2.5a)
where u,, u,, u, are hyperbolic angles
U, =u, + Uy, (2.5b)

and y5/4 = A may be thought as a measure of a pseudoarea

A = Jabsinh u, = Jbcsinh u, = jeasinhu,.  (2.5c)
Then, ,
X=(a/c)e ™, Y= (b/cle “,
. (2.5d)
1—X=(b/c)e”™, 1—Y=(alc)e”,
and
0<X, Y<1, —1<1-2X, 1-2Y<1l.  (2.5e)

If |a — b | <c <a + b, we define true angles @, @, @,
@ =b%+c*—2bccos @,,
b? = ¢+ a* — 2ac cos @y, (2.6a)
c?=a*+b?—2bacos ¢,

with

¢a + ¢b + ¢7¢ =T, (2.6b)
and | — §/4 = A is the true area of the triangle
A = }ab sin ¢, = Lbc sin @, = ica sin @,,. (2.6c)

The corresponding expressions for the variables are

X=(a/c)e” ™, Y= (b/c)e

1—X=(b/c)e™, 1 — Y= (a/c)e™. (2.6d)
Notice that

1-Y=X* 1—-X=7Y* (2.6¢e)

where X * denotes the complex conjugate of X, which insures
the reality of integral (2.2) in that case.
All formulas (2.2)-(2.6) are collected in Table I.

1Il. SPECIAL CASES

Expression (2.2) simplifies when the indices take pecu-
liar values, as the hypergeometric ,F, reduces to Legendre
functions. We examine successively cases p= £+,
£ = +p, and get the limits when yu, v, p go to zero. The
results are reported in Tables I and II. All formulas concern-
ing Legendre functions may be found in Ref. 7.

A.Case p= £t v
We start with the relations

zFl(I;P+v, 1;p+v,1+1’;x)

—_ (1 _x)—v/2x—v/2P;—1(l _zx)’

(3.1a)

TABLE 1. Some formulas with general (real) g, b, c. Cases u = + v, p = v are explicitly written in terms of the Legendre functions on the cut (real

argument with modulus less than 1) or outside the cut.

atb”

T((p+1+v+p)/A0((p+1+v—p) /AT a+1—v+p)/AT(( s+ 1 —v—p)/2)

r L (@K, (b0K, (ctydt =
0

4cl+n+v

CXu+1)

xzpl(l+ﬂ+V+L’ 1+;t-2+1'i,1+,t;x)2p,(’+”+"+”, 1+”‘2”_"’ ,1+/t;1—Y),

2
1+u>|v|+|pl, a<b+¢

r L(anK, (0K, (ct)dt = é r(l-’ziﬂ + v)r(‘—'ﬁ + V)F(—l—;—'ﬂ)r‘(l—_—ﬂ)P (1 —20PC, QY — 1),
0

2

|pl<1+42inf(0,v), a<b+c;
2

! 1 o,
[ n@nx,e08,@na=L o7, ua(Z - 1oz na(r25-1);

2

- l4+p\fl—p 1+p
J; (a)K, (b1)K, (ct)dt Pypra— 5 r 7 5

1—
v)r( = v)P:,,_m(l 2P, 1, QY —1)

- r(l_;fe + v)l‘(l—;E + v)p(—;_ (1 =20P 57 1, QY — 1)]

_ T
2asinwp
Y= (b/c)e ",

e>a+b, X=(a/c)e™ ™, 1—X=(b/c)e",

{02 inn(1—2Y)Q 78 1, QX —1) = Q5F 1, (1-2Y)Q8,_1,n (2X— D}

1— Y= (a/c)e™.

a?=b%*+c*—2bccoshu,, b*=c+a®>—2accoshu,, c¢*=a*>+b2+2abcoshu,, u,=u,+u,.

Correspondence with Bailey’s result 2 =csin g sin ¢, b =c cos ¢ cos ¢,

X=sin’¢, |- Y=sin’p, 1—2X=cos24, 2Y—1=cos2gp.

[a—bl<a<a+b X=(a/c)e” ™, Y=(b/c)e ™, 1—X=Y*=(b/c)e®, 1-Y=X*=(a/c)e", @, +@,+@.=m
a?=b*+c*—2bccosgp,, b2=c*+a*—2accosg,, >=a*+b>—2abcosgp,.
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TABLE II. The same when one of the indices is zero. K denotes the elliptic function.

"k bOK, (ct)dt =
fo (D KBOK, (et =

‘r I,(a) Ky(bt)Ko(ct)dt = -1—K(\/--‘z e "ﬂ)K (\/z e"‘ﬂ), c>a+b,
o c [4 b

K( %e”'ﬂ)K( %e“"‘/z), la—b|<c<a+b;

T {Qf,,(1-2Y)Q %, (2X— 1) —Q 2%,(1-2Y)Q%,,(2X - D}, |p|<];

J-wKo(at)Ko(bt)Ko(ct)dt=—1I—{K(\/ze“"'ﬂ)K(\/ze_""’z)+K(\/ze“ﬂ)K(\/-£e" )] c>a+b;
o 2¢ c [4 c c

K(\/gei""’z)K(\/gei"'ﬁ)+K(\/ge_i”ﬂ)l((\/§e"”'ﬂ)l, la—b|<c<a+b.

zFl(l';p+v,l;”+v,l+v;z)

=(1-2) —v( —Z)_V/zprp_n/z(l - 2z),
(3.1b)

which hold on and outside the cut, respectively.
Forc>a + b,as 0< X, Y < 1, we take expression (3.1a)
and, with the help of definitions (2.5), Eq. (2.2) becomes

Jw I, (at)K, (b)K, (ct)dt
0

(3.2)
=2)r(32)
xr(——— r(l=p
2 2
XP L n(1=2X0P 57 1, 2Y = 1),

provided | p| <1 + 2 inf (0, v).

For|a — b | <c <a + b, we start with expression (3.1b)
and definitions (2.6). Taking some care in the determination
of the powers, we get finally the same expression (3.2). The
integral {71 _ K, K, dt isderived by replacingvby — v (as
K, = K _,) and we finally get the result for the product of
three K, functions:

f K, (at)K, (bt)K, (ct)dt
0
- A5
2sin v 4¢ 2 2
Se-r(52 )
I'—-= —wv | —
X[ ( AN
XPlp_ 152, (1 =2X)P{,_1,,(2Y—1)

L Hr(52 )
—rf—=£ [ —£
( 2 2

XP(_pv—l)/z(l“'ZX)P(;,..”/;,(ZY—1)]. (3.3)
Results are reported in Table I, lines 2 and 4.

B.Casev= + p

In both triangle and nontriangle configurations, we use
the identity’
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2172 D((1 4+ p)/2)T((1 +p)/2 —p)
Fp+1)
X (z + 1)—(1+#+P)/2(Z__ l)p/2

1
X2FI(L§'LU’ +py%’l +ﬂ,Z)

I(,p—l)/z(z)’

where Q is the Legendre function outside the cut and z
= 2/Z — 1. We get the unique formula (see Table I, line 3)

= ei1rp

fwlﬂ (at)x, (b1)K , (ct)dt
0

1 2 _ 2
=—a‘Q‘(7u— 1)/2(} - I)Q (yin)/z(m— 1) (3.4)

and, for & K, K,K, dt, another expression

FK,, (@)K, (1)K, (ct)
0

T 1

2sin7u a

2 - 2
X{Qp— (/4+1)/2(}_ I)Q —"(,/-t+1)/2(1 — Y" 1)

2 _ 2
- Ql(’;t—l)/z(}_ I)Q(pp—l)/z(l — Y— 1)]
(3.5)

This expression looks different from (3.3). To check
that they are actually the same, we make in Eq. (3.5) the
substitution p—v, p—p, coa, 2/x—1=1-2%,
2/(1 —Y) — 1=32X — 1, and then rewrite the Q7 in terms
of the P 7 (Table I, line 5).

C.Casep=v=p=0
Expressions for §& I,K K, dt are easy to get, when using
(3.2) or (3.5) and going to the limit. We have
f I(at)Ko(bt)K,(ct) dt
0

= (7*/4c)P°_,,, (1 — 2X)P°_ ,, (2Y — 1).

The function P°_, , can be expressed in terms of the elliptic
function K but the definition differs depending on whether
the argument is on or outside the cut.
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For —1<x<«]l,

P° . (x)=Q/m)K N1 —x)72),

and for any other z,

P° 12(2) = ‘l\/
T

We shall need, too,

zilK(%)

2 2
0% 1,(2) = —K( 2 )
z+1 Vz+1
We get then

fmlo(at)Ko(bt)Ko(ct) dt
0

=iK(\/ze"“‘/2)K(\/%e"’ﬂ), c>a+b,
c c
(3.6a)
N o W e
b b b
la—b|<c<a+b, (3.6b)

the second formula being symmetrical by exchange of b and
c.

The derivation of K KK, dt is more subtle, as we
need the behavior of PZ_ |, for 0=~0 or 7=0, depending on
whether we start from (3.3) or (3.5). For instance, we set
p=0inEq. (3.5). We have

J'QK# (at)K,(b1)Ko(ct) dt
0

T 1

2sinmu a
2 2
X{QO_ W+ D2 (Y_ I)QO— (w+ 172 (m— 1)

~ oG- 1))
(p—~1)72 X (u—1)72 1—-Y

As’
%Qﬂ_m(z) o = *?PO_ 12(2),

the indetermination is removed and

JwKo(at)Ko(bt)Ko(ct) dt
0

2

+PL "’(1 E Y I)QO‘ ”’(%— 1)]

where the Legendre functions are outside the cut. In terms of
the elliptic function, we have finally

fwKo(at)Ko(bt)Ko(ct) dt
(4

= (7/2a)WEVI — YK (JI=X)K (JT=7)
+KWX)K(T)}
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O
c ¢
(3.7a)

ZEIK (\/z" Wz)K (\/—‘7 WZ)
2c ¢ c
ey fr el o)

¢ ¢
la—b|<c<a+b. (3.7b)

All these results are reported in Table I1.

IV. DERIVATION

New integrals may be calculated using the derivation
with respect to the parameters. From

L t*Z, . KK, dt

d .“)Jﬂm A—1
=€z — TF— t Z K K dt
Z(aa:Fa o # .
(ez=1if ZM=IM=I”, €, = —1Iif Z#=K#),

4.1)

or

fo t*Z, KK, dt

_ _(i¢£) f “tAiZ,K, K dr, (4.2)
0

dc ¢

it is easy to reach any integral where the indices may be
lowered or raised by one or more units (provided it con-
verges); the power term is always raised. This was already
used in Ref. 4 for getting new integrals of three J functions.

Each of the operations above corresponds to increasing
by one unit the quantity

a+B+1—y—y’,

where a, B, v, ¥’ are the indices of the F, function [Eq.
(1.1)]. In the frame of the present paper, starting with
a+pf +1=y+ v, we get integrals such that

a+B +1=y+7+n, (4.3)

which is the opposite situation of that proposed by Burchnall
and Chaundy,’ reported here in Eqgs. (1.6).
As an illustration, we calculate

n positive integer,

f 1Z, (@K, (0K, , (ct) dt, Z, =1 K,.
0

A similar integral, but with three J functions, was calculated
differently elsewhere,® but using a basic formula,® which is
not adequate here. We consider only the + sign (the —
sign amounts to changing v into — v). We have

Jmtl,, @K, (bNK, , ,(ct) dt

= (ﬂ____l_ _ _Ea_) le‘, (a)K, (bt)K, (ct) dt.
c ac/ Jo

This calculation was already performed in Ref. 8. We
get the functional relation
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TABLE III. Some integrals obtained by derivation with respect to the parameters.

a*b " T(u+vIT(1Fv) 7,

2 >|v ,
e ANt +p> v+ it v

f tL, (a)K, (bDK,,, , (ct)dt =
0
.?:E%[J‘l(,uj;v, 1;/&+1;%e"”)—zF,(,uiv,1;,u+1;%e_"")}, c>a+b

_%ImZF,(,uiv,l,u+l L ""’), la—b|<ec<a+b;

f ad,(a)K, (BOK, (c)dt = Ml;_(xl_smh(vu ), e>a+blv|<1
0
=£_(.'_'_)_I.;(A1_—_‘isin(wp,.), la—b|<c<a+b;

f thy(at) Ky (b)) Ko(ct)dt = Ya , c>a+b,
o 4A

Pa
=—, |la—bl<c<a+ b
vy | l<e<a+

n+1sinh[(n+ 1)u,]

k]l =
p Kb, eodr = (L)' L § ()7 Shlot Dl -,
J;t(at) o(BOK, (ct)dt A; PR c>a+b

()z‘z"()"“s“‘fff%?”"

- a n+1sinh{(n 4 Du, ]
J; tKo(at) Ky (bt) Ko(ct)dt = —-—Z-{ ) W

=L 1 M_l]
_A[ ‘p“ln +Z() (n+1)? ‘

a—b|<c<a+b;

c>a+b
[

(i) e>a+b, P=a*+b*+2abcoshu, a*=b>+c*>—2bccoshu,, b2=a®+ c®— 2accoshu,,

u, =u, +4, A= iab sinh u, = }bc sinh u, = Jcasinh u,,.

(ii) la—b|<a<a+b, a®=b>+c*—2bccosg,, b =c>+a>—2accosg,, F=a*+b>—2abcosg,,
@, + @, + 9. =7m, A=labsing, = }bcsin @, = lacsin @,.

WwWH+vF(p+vliu+1lyv+ 1L, X(1 - Y),Y(1 —X)) by replacing both x4 and v by the opposite —u, — vin Eq.
= (02/4&) [’u ZFI(” +v,lv+ l,Y) (44) We get then the integral
+ v P+ v+ X)), e>a+b rtKKKwd-
= (%/48) Im [ By (4 + %Ly + L) A(:gain, we may be interested by some limit cases when
+v i+ v+ mh)], le—bl<ec<a+b, one of the indices u or v goes to zero.
whence For example,

F’Iu (oK (K, ety de L ty(an)K, (b1)K, (1) dt
0

F(V)F(l —v)

ab” T(w+v)I'(1 —v) sinhvu, (c>a+b)

T 8Achtr T +p) 4A
I'Mra-—y) .
X LR (u+ v, 1,1 + ;1 — ) =—T—smv¢,, (la—-b|<c<a+b)
—Fi(u+vL,1+ X))}, ife>a+b, (4.5)
ph v _
— a'b (g +v)T(1 —w) (4.4) and
BAck™ Fd+m wI K (b)K, d
X{[zFI(/I‘f"V,l,l +#’X) J; to(at) 0( t) O(Ct) t
—Fi(u w1+ X))/, =u,/48 (c>a+b)
ifla—b|<c<a+b, =@, /4A (la—b|<c<a+Db), (4.6)
where A, A are the areas (2.5¢) and (2.6c). results formally very similar to that of Ref. 8. For v = 0, we

The associate integral f§&¢I_,K,K, , , dtis obtained  have
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rd,‘ (at)Ko(b1)K,, (ct) dt
0

_(__)_ a-ntrt
“\c¢/ 8A st u+n+1
— ___Xi__], c>a+b’
..>o,u+n+l
=_,() [¢ -1
8AlS p+n+1

Xn+l ]

Sp+n+1)
4.7)

la—b|<ec<a+b,

which reduces to (4.6) whenz =0.
Starting with (4.7), we derive

rtKo(at)Ko(bt)Ko(ct)
0

xle (%)
=——.—ualn—
4A c
® (a)"+lsinh(n+1)u,,]
o n+10? J

1 (a "+'sin(n+l)¢,,}
1 — —_—
4A{ P n(c)+nz=:o(c) (n+1)?

la—b|<c<a+b. (4.8)

We notice that the summation on the right-hand side
may be written as the integral

(a/c)e"t
J In(1— z)iz-
(a/cre ™ z

(a/c)e 4 ( 1— z)
J In ——dz,
«

a/c)e‘% V4

>a+b,
c

or

respectively, as |z| < 1 (cis the largest length). These results
are summarized in Table III.
Incasea = ¢ (b <2a), the last formula (4.8) reduces to

1 sin(z+ g,
_—, 4.9
4A,§6 (n+1)? (4.9

and the series is Lobachevski’s function. !

As a last remark, we want to emphasize that the deriva-
tion method explained in Sec. IV increases considerably the
number of integrals that can be calculated and consequently
the number of F, functions that are the sum of products of
functions in one variable. It may be used to get other inte-
grals that those correspondingtoa +8 +1 =y + ¢ +n.
As an example, we list some integrals related to the first class
of factorization of the Appell function and the integral
fet'~vZ K K, dt, which was studied in Ref. 1:

fwt [Ko(at) 12K, (bt) dt =
0

jwdt t3="Z, (a)K, (bt)K, (ct)
0

2 _r=t)(2 )
(3a a 8a+a

X f t'=vZ (a)K, (b1)K, (ct) dt
0

and more generally
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f tt+2=vZ (at)K,(bt)K, (ct) dt
0

-G G ol

xfwt 1-vZ (at)K, (b1)K, (ct) dt.
0 .

Other possibilities are

f t*~"Z, 1z, (@)K, ., (b)K, (ct) dt
0

—¢ (_Q_J—rl) (iil)
Z\ob 7" b/\da " a
xJ‘mt 1=vZ. (at)K, (bt)K, (ct) dt,
0

f t*~"Z, (a)K, -, (b)K, (ct) dt
(J

9 1) (_3_ 1)
—ez(aa + a/\3db + b
XJ t'=vZ (a)K, (1)K, (ct) dt,
0

where Z, =1,, K, and €; = + 1 depending on whether
Z, is I, or K,,; we do not intend to carry out a more com-
plete investigation.

ACKNOWLEDGMENTS

The authors are greatly indebted to Professor M. L.
Mehta for his suggestions and comments for the redaction of
the manuscript.

APPENDIX:CASEv=,p;b =8¢

We derive briefly here some formulas where two of the
three parameters a, b, ¢ are equal.

1.Casep=vanda=>»

Whenc>2a, 1 —2X =1 —2Y =1 — 4a%/¢? and Eq.
(3.3) simplifies into

lev (a)K, (at)K, (ct) dt
(]

_ I(U +p)/2)T((1 —p)/2)

4c
2 (e )
r(H2+v)r
X 2 +v > +v
1 — 4a?
S =
2
XP(;:I)/Z(_ 1"‘% (Al)
When c¢<2a (triangle conﬁguration)v 1-2X

= 1—2Y = i/4a%/c* — 1 is pure imaginary. The Legendre
functions P, 7 ,,,, ( + iv4a?/c = 1) may be rewritten in
terms of real quantities. Let define ¢ =¢./2, with

sin @ = ¢/2a, cos @ = 1 — ¢*/4a”. Then, from the Whipple
formula,’
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Pl_nn(ticoty)
(/2 F )

A TD(—v—(p—1)/2)

Xsin @ Q 5%, (cos ¢ Fi0),
or, in terms of the Legendre function on the cut,
o :5/21/2 (cos @ F10)
= [Q 2622 (cos @) + i(7/2)P =572, , (cos ) ]

~i(n/4)p, — i(n/4)p(1 £ 1)
X e~ /P =itn/pU £ 1,

which finally leads to
J. I, (a)K, (at)K, (ct) dt
0

1 T((1 +p)/20((1 —p)/2T((1 —p)/2 —v)

" 4ma T(1+4p)/2—v)
_ &
x|e=a(\[1-5
T ; 2 \|?
T p P2 ( 1-< A2
+’2 172 ¥ (A2)

Corresponding expressions for (3 I_,K, K, dt and
§& [K, 1K, dt are straightforward and we do not indicate
them here.
2.Casev=pandb=c

For the sake of convergence, we are in a triangle config-
uration and a < 2¢. From (3.5), we get

J. I (at)[K (Ct)] dt_—Q(” 1)/2(
2
XQ(;'il)/z( i %“1)

Using again Whipple’s formula,” we transform Q &7, ,
into Legendre functions P ;_"{,22 on the cut. We have

4C2

=1
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Q&L ha(Licoty)

=\/—F('u+1:tp) o £ iTlp— 1/4)
2

P #7% (cos @ FFi0)sin @

= &1‘(’%1 + p)e +im(p— 1/4) £ i(m/)p
XP,H7 (cosp)sing,
where ¢ = @, /2, sin ¢ = a/2c. Whence

JWI# (at)[K, (ct)]%dt
0
=Tt o \p(Etl_
4 ( 2 PP

[p ﬂ,/}z( 1-2 ]2. (A3)
- e
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On the linearization problem for ultraspherical polynomials
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A direct proof of a formula established by Bressoud in 1981 [D. M. Bressoud, SIAM J. Math.
Anal. 12, 161 (1981) ], equivalent to the linearization formula for the ultraspherical polynomials,

is given. Some related results are briefly discussed.

I. INTRODUCTION

The linearization problem for a family of polynomials
{4, (x)}, orthogonal with respect to the weight #(x) on
theinterval ( — 1,1), amounts, as is well known, to the eval-
uation of the integrals

1
f dx W(x) A, (x)A,(x)A,(x).
-1

Apart from their mathematical interest, integrals of this type
are very useful in physical applications. The most common
example occurs in the quantum theory of angular momen-
tum,’ where 4, (x) is the nth Legendre polynomial P, (x).
More generally one can consider the case in which the
{4, (x)} are ultraspherical or Gegenbauer polynomials.>*

In recent years many investigations have been devoted
to the properties of the so-called g-hypergeometric func-
tions; a discussion on the subject, including physical applica-
tions, can be found in a survey paper by Andrews.*

In the present note we want to give a direct proof of the
following result obtained by Bressoud® as the limiting case
(g — 1) of the linearization formula for g-ultraspherical
polynomials:

(1 =2sx+5%) %1 =2tx +¢2) 4
< (m +n) T'A+mTA+n)
mi=o\ N LT A +m+n)
Xs"t" F (4,24 +m + n;
A+m+n+Lst) Co ., (%),
whence one easily obtains

(L.1)

1
f dx(l_x2)i—l/2(1_2gx+s2)—}.
—1

X (1 —2tx +£2) ~*C*(x)

_ 2! 2T (24 +r) (20), g
A +r) [T L),
X2F1 (4,24 + KA + r + 1;st)
X F ( —rA;24;1 —s/0).

Equation (1.2) is a rather unusual version of the lineariza-
tion formula for the ultraspherical polynomials:

(1.2)

Ch(x) Ci(x)
_E m4n+A—2r (m+n—2n)!
r=0 m+n+/1—" (u)m+n—2r
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('{')r('l)m—r(/l)n—r(u)m+n—r
"!(m -_ r)!(n - r)!(l)m-é-n—r

C;{n+n—2r(x)’

(1.3)

as can be checked by expanding both sides as a double series
insand .

Although Eq. (1.3) is a standard result, whose history is
presented, for instance, in a book by Askey,® we believe that
a simple derivation of the more compact equation [ (1.2) ] is
of some interest. This is done in Sec. II. Section IIl is devoted
to a brief discussion of some related results.

Il. THE PROOF OF EQ. (1.2)

The crucial remark is that the two functions ,F; can be
rewritten in terms of suitable Legendre functions, whose
product is essentially the Laplace transform of a product of
two Bessel functions. These, in turn, arise in a quite natural
way when one expands the exponential in Gegenbauer poly-
nomials.

Having this in mind we first transform the left-hand side
of Eq. (1.2) in the following way:

1
Gf(s,t)sf dx (1—-x)*~12(1 -2sx +5°) =4
-1
X(1=2tx+1%)"*C} (x)

=[T(4)] ~2r dEEATlem DS
o]

(4}

1

X dx(l _x2)/1— l/2e2(s£+t1])x C;l (x)’
-1

whence, by integrating’ over x, we arrive at
72' “¥T (24 +r)
AT P

xf dg f dn (s& + 1) —H(Em)A !
0 0

Xe_[(1+s2)5+(1+'1)"111+r(2(5§+ 117)),
(2.1

G (st) =

Next we perform the change of variables
E=A"(1+1Da—18], p=A""[sB— (1 +5)a],
where

A=s(1+t)—t(14+52)=(G—1) (1 —s1).
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Without loss of generality we assume 0 <?<s<1 so that
A > 0. Equation (2.1) now reads

a2 UL (24 +71)

G% (s,t) = (st)* A -
GO =T wr
) [+t /1] a
xf dea-*I,, ,(2a) dB
(1] [(1+8)/s5)a

(e g) o122
(2.2)

The inner integral is simply Poisson’s integral representation
for Bessel functions,® and we get

G* (s,t) = /22 =P (24 + 1) (st)~12AV2 -2
’ AT W)
XI daa= ', ,,(2a) Il_l,z(Aa)e“‘“,
o 2st
(2.3)
where

= (s+1) (14 s2)/2st.
By evaluating the Laplace transform® we have
w22~ (24 +1)]?

G'f (s,8) = V2 —A(gp)=1/2p1/2
nIr))?
XP;4*" (cosh ) P 7213 (cosh 1),
2.4)
where
sinh 7 =2¢, sinh 7 = (A/2st) c,

cosh 7 cosh 7' = Ac, |

wd A—1 (s +tw)"
L @ [A4+5)2 4+ (1 + 1))+

=B (AA) t",F) (A,24 + 1A +r+ Ust) oF, (—rA;24;1 —s/t).

Next let us consider the case s = ¢ of Eq. (1.2):
1

f dx (1 —x*)*~1V2(1 —2tx + t?) ~2*C% (x)
-1

72! ~¥T (24 4 7) (24),

- r

N +r) [T DIPA),

X F (A2 + A + r+ 1567), (3.2)
or, equivalently
(1=2tx 413~
= (24), , 2y A
= tT LR (A2 + A4+ r+15t%) CF (x).
r=0 r
(3.3)
It is interesting to derive this formula in a direct way.
To this aim we note that
1
f dx(l_x2)11+r—l/2cr§;1'.+r(x)
-1
i (A)n(2A+7), T (A+r+1) ’ (3.4)
n! CA+r+n+1)
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A—1
a) e P

zFl(Zi+r,/1+r+5;2/1+2r+l;

or, equivalently,

c=yst /(1 —st), coshr=1+St, cosh = 3L
1 —st 2st

Finally, recalling that'®

_ 14 st
et (29
A=t 1—st
(st)(l+r)/2
S T@A+r+1)
(st)(ll+r)/2
T T(+r+1)
X2F1 (/1,?/1+r,/1+r+1,st)

21v1(1—,1,/1;/1+r4-1;_1s‘ )

— st

(1 —s)?

and

iy (3)
+r-—
2Vst

G- (s_t)l—l/?. (i)r/z
st s

mzﬂ (— rA;24;1 —%),

Eq. (1.2) follows at once.

ll. SOME OTHER RESULTS

Wefirst observe that the rhs of Eq. (2.1) can be handled

in a different way. By performing the change of variable

= £w in the inner integral, and then integrating over &, we
have

4 (s+tw) )
(14+92+ 1+
3.1)

| . . . .

as one can verify by expanding C 22+ " in powers of x2, inte-
grating term by term, and then summing the resulting ,F, by
Watson’s theorem.!" The integral

1
J dx (1 =x»H)*~
—1

72 HT (24 +1) (24), (D), (24 +1),
AA+7) [T DPA), A+r+ 1,0

2¢c2 L, (x) CH(x)

(3.5)
needed to arrive at Eq. (3.2), follows by expressing C?
through Rodrigues’ formula, then integrating » times by
parts, and finally using Eq. (3.4).

As a final remark we point out that Eq. (3.2), multiply-
ing both sides by s” and then summing over r, yields

1
f dx (1 —x)*=3(1 —2tx +t2) ~ (1 — 2sx + §%)
-1

1
=2'"Hsin(#4) f du
0
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XuP (1 —u)*(1 — t%u) (1 —stu) — 2

=B (A +1) F;(2LA244 + 1;t251).
(3.6)
The second line of this equation has been obtained by em-
ploying, for the ,F, appearing in Eq. (3.2), Euler’s integral
representation; in the last line, use has been made of Pi-
card’s'? single integral representation for the first Appell
function F,.
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Fractional approximation to the vacuum-vacuum amplitude of a $4-potential
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Here, the vacuum—vacuum amplitude with a ¢*-potential in terms of the fractional
approximation to the partition function of a zero-dimensional field theory is presented. This
fractional approximation has been obtained from both the power series and the asymptotic
expansion. The power series diverges, nonetheless the fractional approximations are excellent. All
the approximations from first to seventh degree are presented, with maximum errors from 0.6%

to 1.6 X 10~°%, respectively.

I. INTRODUCTION

In a recent paper,’ it has been shown that the Green’s
function for U(N) invariant-matrix ¢*-theories in zero
space-time dimensions can be expressed in terms of a class of
orthogonal polynomials P, (¢), which are orthogonal on the
interval ( — c0,00) with respect to the weight function
exp( — m’¢* — A¢*). These polynomials are obtained in
terms of the function I; (a) and derivatives [see Eq. (3.7),
Ref. 1]

+ o
I(a) = f exp( — ad® — B)ds. (1

This function is the partition function of a zero-dimensional
field theory, and it is used in instanton techniques.? It is
related to the modified Bessel function X, ,,; its calculation,
as well as that of its derivatives, is cumbersome.? For this
reason, in field theory calculations we are often restricted to
its asymptotic form.* Recently a method of obtaining frac-
tional approximations to Coulomb and Bessel functions has
been published,>’ which allows an easy calculation of the
functions with great accuracy. We have applied this method
to the function I (a), and we have arranged the solution in
such a way that the computation of its derivatives is also
easily obtained. This is the first time that this method of
obtaining fractional approximations has been applied to a
function whose power series has a zero radius of conver-
gence.

The procedure and determination of the coefficients of
the approximation is described in Sec. II, where we also
show explicitly how to obtain the derivatives. The results are
discussed in Sec. II1, and we conclude this paper with a short
summary in Sec. IV.

Il. DETERMINATION OF THE COEFFICIENTS OF THE
APPROXIMATION
Here for convenience we change the notation in Ref. 1,
and, making a trivial change of variables, we define
+ o
I(x) =f exp( — 5* — xs*)ds. 2)

The power series for this function is given by

= i a,x", a,= (;”"r("'”; 1). (3)
n=0 H

1,(x)
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The radius of convergence of this series is zero, and for that
reason the following asymptotic expansion is more often

" used:
Lt = 1/4 ; x' :}/4 j=0%’ (42)
b, =[(4n —3)/(16n* —8n)1b,_,, b,=iI'(}),
(4b)
B,=[(4n—1)/(16n*> +8n)1B,_,,
By= —1iI'(. (4c)

However, from the point of view of the fractional approxi-
mation, the coefficients of the power series are as important
as those of the asymptotic expansion. In spite of the zero
radius of convergence of the power series, if a fractional ap-
proximation is determined with the asymptotic expansion
only, its accuracy is very poor.

Because of the form of Egs. (3) and (4), we will consid-
er approximations of the form

b n
Yx)=|—bo <,
*) [(1+x),/4j;0p] (1+x)3/4 zp' ]

n -1
x(z qu") , (5)
k=0

where all the polynomials are monic. This fractional approx-
imation presents the following important features.

(i) For large x we obtain the factors x ~!/4 and x
in the asymptotic expansion.

(ii) For small x, because of the unity in the radical, the
approximation is regular at x = 0, and an increasing number
of terms of the power series, Eq. (3), can be obtained using
polynomials of higher degree.

(iii) Since the parameters of the denominator of both
terms of our approximation are the same, the parameters of
our fractional approximation are given in a unique way by
simple linear algebraic equations.

This third feature is an improvement on our previous
work on the Coulomb function,’ where a free parameter had
to be obtained by trial and error. To obtain the parameters of
our approximation, we proceed as in Refs. 5 and 6. By using
the Taylor expansion of our approximating form, Eq. (5),
and equating the coefficients of equal powers of x with the
power series, Eq. (3), we get a number of equations relating

—3/4 as
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TABLE L. P, and p; parameters of the polynomial numerators, and g, pa-
rameters of the polynomial denominator of ¥(x).

n=1

go = 0.251 Po=0.626 P, =1.126
n=2

qo=0.076 4 Po=02980 P, =0.6607
q,=07229 2, =10979 P, =15979
n=3

g, = 0.009 76 Do = 0.085 84 Py=022574
g, =0.198 32 p1=0.493 60 P, =1.01370
q.=0.919 37 p2=129437 P,=1.794 37
n=4

qo = 0.002 6757 Do = 0.040 4574 P, =0.111 9601
¢, = 0.079 6896 p1=02857118 P, =0.674 6508
g, =0.619 9074 P, = 1.128 5700 P,=1.933 1757

g, = 1.488 3780 s = 1.863 3780 P, =2.363 3780

Pj» P,, and g, with the known a,. Similarly, by using the
asymptotic expansion of Eq. (5) and equating the coeffi-
cients of equal powers of 1/x with the asymptotic expansion,
Eq. (4), we get two sets of equations: one set relating p; and
g, to the known b,, and another set relating P; and g, to the
known B;. As usual, we have to choose the same number of
equations as the number of parameters to be determined.
There are several possibilities, so we have to develop criteria
for choosing the best set of equations. In order to obtain
optimum accuracy, we have found that the following criteria
gives the best results for approximations of order n (n> 1):
We take n + 1 equations from the power set and 2n — 1
equations from the asymptotic expansion, n of these from
the b; set and n — 1 from the B, set.

For the first-order approximation we have three param-
eters to determine, g, Po, and P,, so the best results are ob-
tained if we take one equation from the power set, and two
from the asymtotic set, one from the b, set and one from the
B, set. In this case the set of linear equations can be simply
solved symbolically, and we obtain

go = (3by + 7By)/8(a, — by — B,), (6a)
Po= (3a, + 4B,)/8(ao — by — By), (6b)
Py = (Ta, — 4bo)/8(ay — by — By). (6¢)

For higher orders, the expressions become too cumbersome
to be solved symbolically, and it is best to solve numerically.
The results are presented in Sec. ITI. Also, since the b, expan-
sion dominates over the B; expansion, for orders higher than
1, we take one more equation from the b; set than from the B,
set, as stated above.

In order to obtain the derivatives of our function to any
order, it is best to cast it in a pole-residue form

b d C;
Y(x)=—2_ (1 _
*) (1+x)‘“( t2 (x+d,))

— B (1 oG ) 7
T A 0T +,§a (x+d)) @
Y(x) = boYl(x) +B()Y2(x)- (7,)

The Leibnitz formula for the mth-order derivative of ¥, (x)
[and a corresponding expression for ¥,(x)],

" m i
2,7 = % (1)o7 5m)

n C:
xD,( 1 & )
’( +1§1 (x+d,.))

can then be used straightforwardly to obtain the derivatives
of any order in terms of the pole-residue parameters ¢;, C,,
and d,.

(8)

lll. RESULTS

We have computed all approximations from first to se-
venth degree. The fractional parameters for the approxima-
tions of order 1 to 4 are listed in Table I, and the fractional
parameters for the approximations of order 5 to 7 in Table I1.
The pole-residue parameters for these approximations are

TABLE IL P, and p, parameters of the polynomial numerators, and g, parameters of the polynomial denominator of Y(x).

n=>;

9o =2.2771419x10~*
q, = 0.010 695 668

g, =0.151313 739

g = 0.794 704 645
q,=1.580728 79

n==6

go = 5.408 356 610~
¢, = 3.270007 0 103
q, = 0.062 857 400 8

g, = 0.482 123701

q, = 1.568 420 29
qs=12.135393 74

n=17

go = 3.85502753x10°¢
¢, =3.21163063x10~*
g, =9.132658 99%x 1073
g, =0.112 933141

g, = 0.652 895 540

gs = 1.790 897 02

gs = 2.224 836 83

Po = 8.318 063 39 103
Py =0.071046 6127

P, = 0.418 315 358

Py =133799877

Po= 195572878

Po=3.53676743% 103
Py =0.033499 909 5

P2 =0.235 159 751

P, = 1.011 824 33

Do =231971377

Py = 2510393 74

Po = 6.184 076 76X 10—*
P, = 6.695 523 71102
P, = 0.057 358 635 2

P =0.342 488 726

Pe= 1261599 34
ps=2.575731 66

Pe = 2.599 836 83

P,=00239517115
P, =0.191 568 447
P, =0.900 232 545
P, =2.188 779 83
P, =245572878

P, =0.010 307 6919
P, =0.094 887 8859
P, =0.561 765 239
P,=191411034
P, = 3.447 82731
Py =13.010393 74

Py =1.818 515 51X 10~*
P, =0.019 795 6468

P, = 0.152 933 401

P, =0.766 943 155

P, =2.280 527 57

P, = 3.748 566 74

Py = 3.099 836 82
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TABLE II1. d, poles and c,,C; residues of ¥Y(x).

n=1

d, =0.251 ;= 0375 = 0875

n=2

d,=0.1285 = 03722 C;= 10128
d,=0.5945 c,= 0.0028 C,= —0.1378
n=3

d, =0.070 51 c,= 068342 C,= 194806
d,=022029 c,= — 0478 00 C,= —1.28884
d,=0.628 57 ;= 0.169 58 C,= 021578
n=4

d, =0.052229 55 = 1.068 1904 C,= 30765367
d,=0.1417449 ¢, = —1.0001953 C,= —27553356
d, =0.407 5204 c;= 02854140 C,= 05678868
d, = 0.886 883 2 c,= 002159093 C,= —0.014087 88

given in Table ITI and Table IV, respectively.

For the first-degree approximation we took one equa-
tion from the power series and two from the asymptotic ex-
pansion (one each from the b, and B, expansions). This ap-
proximation was compared to the exact function, and this
choice of parameters was found to be the best. The maxi-
mum error occurs at x = 0.5 and is 0.6%. The error de-
creases rapidly with increasing x, and is already less than
0.03% at x = 10. For the n = 2 approximation we took, ac-
cording to our prescription, three equations from the power
set and three from the asymptotic expansion: two from the b,
set and one from the B, set. The accuracy improves, as com-
pared to the first degree approximation, and the maximum
error occurs also at x = 0.5, but is only 0.16%. The error
also rapidly decreases with increasing x, and at x = 10 it is
less than 0.003%. The third-degree approximation has nine
fractional parameters and here, as in all approximations of
degree greater than 1, we followed our prescription to choose
the equations, described in Sec. II. The maximum error now
occurs at x = 0.2, and it is only 0.01%. As above, the error

TABLE IV. 4, poles and ¢;,C, residues of ¥(x).

also decreases rapidly with increasing x, and at x = 10 is
only 0.0001%. The fourth-degree approximation has a max-
imum error of 0.005% at x = 0.3, and by x = 5, it repro-
duces exactly six decimals.

The maximum errors of the approximations of fifth,
sixth, and seventh order occur at x =0.2, x =0.25, and
x = 0.2, respectively, and are 3.3 X 107%%, 2 X 10~*%, and
1.6 X 10~ 3%, respectively. The error in all these approxima-
tions decreases from the maximum error by more than an
order of magnitude for x <0.05 and for x> 1. We should
point out that as we increase the order of our approximation
from n to n + 1, the maximum error always decreases, but it
decreases by roughly a factor of 2 if n is odd, and by roughly a
factor of 10 if » is even.

It is important to point out that though the power series
diverges, it contains very valuable information for the frac-
tional approximation. We have found that if we take fewer
equations from the set of equations obtained from the power
series than the optimum number described above (2 + 1 for
n>1), the accuracy of the approximation markedly de-
creases.

IV. SUMMARY

We have presented a fractional approximation to the
function I (@) of Ref. 1, which permits the computation of
the vacuum-vacuum amplitude with a ¢*-potential. Since
for this computation the function and its derivatives are em-
ployed, we have cast the approximation in a pole-residue
form, from which derivatives of any order can be easily ob-
tained in terms of these parameters. The parameters of all
approximations from first to seventh degree have been pre-
sented, and their maximum error of 0.6%, 0.16%, 0.01%,
0.005%, 3.3X107%%, 2X10™%%, and 1.6X103%, re-
spectively, indicate that the amplitude can be obtained with
great precision. We have also indicated the procedure to fol-
low if we desire higher-degree approximations and have in-

n=>5

d, =0.0377353546 = 2.633 187 71

d, =0.083 6844220 ¢, = — 3.307 52774

d, = 0.197 455 000 = 1.054 729 98

d, = 0.449 624 886 c,= — 0.063484 1117
ds;=0.812229 122 s = 0.058 094 162 7
n==6

d, =0.031249 7080 6= 4.700 493 83

d, =0.064 090291 9 ¢, = — 656213130
d, =0.140 927 593 = 2.405 312 69
d,=0.319 739 026 c,= — 0276355019
ds=0.633 718 755 5= 0.093 873 509 0
dg = 0.945 668 365 o= ‘0.013 8062890
n=17

d, =0.0251923772 d= 127437217

d, =0.046 5839316 d,= — 209412383

d, =0.089 752292 4 d,= 100671120

d, =0.181 416 130 d,= — 1.768 204 12
ds=0.359 216912 ds= 0.214 222 566
ds = 0.627 124 695 dg= 0.333 109 499
d, = 0.895 550 485 d,= 0.026 0751578

C,= 764231600
C,= —9.36951976
C,= 27712549

C,= — 0.206 478 512

Cs= 0037427 3371
C,= 13.6882063

C,= — 187833264

C,= 658543512

C,= — 0723359755

Cs=  0.108410934

Cs= — 3.66193690x 10~
Ci= 372265691

C,= — 60.498 062 9

C,= 284150608

C,= — 4749908 58

Cs= 0461293036

Co= 00103983639
C,=  9.65016120x 1073
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dicated roughly how the accuracy increases with ». In this
paper we have extended the method of fractional approxima-
tions to the case where the power series has zero radius of
convergence.
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On a particular transcendent solution of the Ernst system generalized on n

fields
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A particular solution, a function of a particular form of the fifth Painlevé transcendent, of the
Ernst system generalized to  fields is determined, which characterizes both the stationary axially
symmetric fields, the solution of the Einstein (» — 1) Maxwell equations, and one class of axially
symmetric static self-dual SU(n + 1) Yang-Mills fields.

I. INTRODUCTION

In a recent paper, Giirses has shown that the system of
the Einstein—(n — 1)-Maxwell equations, valid for the case
of stationary axially symmetric metrics, can also be under-
stood as describing a particular class of static axially sym-
metric SU(n + 1) self-dual Yang-Mills fields.! The system
of nonlinear partial differential equations, which plays a
prominent part here, may be reformulated by means of some
changes of unknown functions under a particularly compact
form that constitutes a generalization to n complex fields £*
of the well-known Ernst system.>>

We have investigated this generalized system and ob-
tained a first form of solutions: { * = £ *(v), the n fields being
determined as functions of one arbitrary harmonic function
v. This solution covers, in particular, the vacuum gravita-
tional case, when the metric is that of Papapetrou.*

The purpose of this article is to present another form of
the solution that will be found by means of the method of
separation of variables p and z. This procedure, which we
have already used in previous papers on the Ernst equation,’
will be fully developed here.

To start with we would like to briefly recall some aspects
of Giirses’ article, in particular the initial Einstein—(n — 1)-
Maxwell system and the Ernst # fields formulation, which is
the object of our study. The intermediate stages will be omit-
ted here because they have already been explained.> We will
then develop the arguments and computations that lead to
our new solution. The latter can be written under the form of
a hyperspherical representation of the n complex fields £ ¢
parametrized by a particular form of the fifth Painlevé tran-
scendental function. Finally some particular solutions corre-
sponding to the specific choices of the integration constants
will be given.

ll. RECALL OF THE FORMULATION OF THE BASIC

SYSTEM

The coupled Einstein—Abelian gauge fields equations
are given by

Syy =Vap (FanFo% — 18, FigF*¥), (1)
F¥¥ =0, 2)
F;, =d,45—-d,4;, (3)

where ¥, is a diagonal matrix, which, by a suitable choice of
the basis to the potential 4 ;, can be taken as the Kronecker
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symbol 6,,; a, b,... =1, 2,... (n — 1) (n>0). A semicolon
denotes the covariant differentiation with respect to the Rie-
mannian connection. The considered space-time is station-
ary and axially symmetric; its metric can therefore be writ-
ten under the form

ds* = f(dt + o dp)* — f [ (dp® + d2*) + p? d2],
4)
where the functions f, », ¥ depend only on the p and z coordi-

nates. It is again assumed the gauge potential one-form A4 ¢
has the two components

A°=AS dx*=A%dt+ A% dp, (5)

which also depend only on p and z.

The system of field equations (1)—(3) is explicitly writ-
ten by taking into account the assumptions made about the
metric (4) and the gauge fields (5). In our work® we have
described how, following Ref. 1, the system obtained could
be analyzed and reformulated in a manner similar to that of
Ernst in the Einstein-Maxell case.> We shall not repeat all
the details of the analysis here, but limit ourselves to relating
the result, namely, that it is possible to introduce a set of n
complex functions § “ (a: from 1 to n) of variables p and z
governed by the equations

AV =200V vLe, (6)
with

A=LPEPT 1,
where V, V2 denote, respectively, the gradient and Laplacian
operators in cylindrical coordinates (p, z) and relatively to
the flat tridimensional metric; the symbol * denotes the com-
plex conjugation. The summation on the repeated indices is
applied to numeration indices g, b,... of the fields.

This system is basic in researching the solutions of the
field equations (1)-(3); a simple examination shows that it
is a generalization to # fields £° of the well-known Ernst
system.

lll. PARTICULAR TRANSCENDENTAL SOLUTION

We intend to research a particular solution of the system
(6) by using the method of separation of variables. Conse-
quently, we put

§%(p:z) = x*(p)A°(2). M
By inserting this expression in (6) we see that we have neces-
sarily
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A%(z) =", (8)

where {a,} denotes a set of n real constants. Taking into
account of this result, the system (6) can be explicitly writ-
ten as

A" + (Upy™ — a2y =2""x" 'y

—a,a X", (9)

. d
with A=y — 1 and '=—.
dp

By then multiplying the two members, in a contracted man-
ner, by £ ** and by taking the imaginary part of the result, we
find a differential equation that can be integrated and we
thus obtain the first integral

YY" =" =2iaA?, (10)
a being a first real constant of integration. By again multiply-
ing the two members of (9) by y** but without summation on
the repeated index a and by taking the imaginary part of the
result and with the help of the relation (10), we arrive again
at a differential equation that can be integrated to obtain a set
of n first integrals:

Yr" =" =2Aay*y” +b,). (11)
To indicate the nonsummation we underline the repeated
index a. We have a set 7 real constants of integration {b, }
that are satisfactory, given (10):

a+ Yy b,=0. (12)
a=1
To pursue the calculation it is advisable to take into account
the relation (11) in the system (9). But it is possible to pro-
gress only by adding the assumption that all constants a,,
introduced in (8), are equal: a, = a, with q from 1 to n.
In order to find a system where each equation governs
only, in fact, one of the unknown functions, we are led to
make the following change of functions:

¥ = Q cos w,e™,

¥* = Q sin @, cos w,e™, (13)
X"~ ' = Qsinw, sin @,-cos o, _, €,

X" = Qsin o, sin w,-sin @, _ ™.

We thus define 27 real functions {€; @1,.c.r®,, _ 15 Upseenstéy }
of the variablep. The first integrals (11) now may be written

PN
P (Qcosw,)?/’

’ b2 )
U, =—la-+ N 14
2 p( (Q sin @, cos w,)? (14

u, = A(a + b, )
" P (Qsinw--sinw, _,)> ’
with A=0Q2— 1.

By taking these expressions into account, Eq. (9) canbe
reformulated in terms of functions (£; @, ) only. In so doing,
we obtain a system of » differential equations that then can
be combined linearly so as to obtain another equivalent of
equations where each of these contains only one function
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twice derived. Hence by straightforward calculation it is
possible to determine successively n — 1 first integrals. To
observe this fact let us consider, for example, n = 3. We then
find the following equations:

Aﬂ(a)i’ + _____wc?s 21 w5 + —l—wi) — 20w}
sin @, P
A’ (2800 COS @
b2 2 _p2 2) =0, 15)
PWsin* o, \ ‘coslw,  sinw (
3
Aﬂ(w{’ — sin @, cos w,w5% + L m{) —20'0; + -—‘:\—;
P pQ

X[b" sinw,  cosw, [ b3 + b3 )]_0
'cosw, sin’w,\cos?w, sin’w, ’
(16)
A[Q" + (/D) — Qo] + sin* 0,0}2) | — 2007
A® b}
a*(1+ Q)0 ——[azﬂ“—
+aA+ 00+ e
1 ( b} b3 )}
- =0, 17
sin? @, \cos? co2+ sin® w, an

By investigating Eq. (15) we verify that it admits the first
integral

”2 A2 ( 2 b% b§ )

2T A Qsinw)*\ P costw, sin’o, (18)

Inserting this quantity in (16) we show also that the result-
ing equation admits the first integral

A (o b1 K )
PO\ coste, sin’w,
It is clear that, without further demonstration, this process

can be easily generalized from 3 to » fields; the sequence of
n — 1 first integrals then being
2 _ A2
W, _1 = 2 . N 4
P (Qsinwsinw, )

X k2 _ btzn—l _ brzl
"l cos?w sin? @ ’
n—1 n—1
22 — A2
" A Qsinw,-sinw, _,)*
b2_ ki,
X(ki_z— 2 u s

cos’w,_, Sin’w,_,

(19)

2
@y =

(20)

2 b2 kZ
a)§2=—————2 A (k§~ 2 _ - 3 ),
P (Qsinw,)* cos’w, sin’w,
2 bz k?.
o = ;\4(](%_ 2l - '22 )
pQ \ cos‘w, Ssin“w,

In these expressions there are n — 1 constants of integration
that must all be chosen positive, from which we derive the
notation (k?%,...k2_,). The insertion of results (18) and
(19) in (17) gives

1 02 1 : ki)
Q" +2Q -2 —nz—lz(azﬂ——
- ol ) o
2
+a2——ﬂgzi: =0 (21)
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as the equation governing the function (p). We can easily
establish that this equation, proved formally for three fields,
is, in fact, independent of the number n of fields. The n — 1
first integrals (20) arise only from the last integration con-
stant k2 in (21). By the change

Y=0?% 22)
we finally obtain the equation
1 1 1 ”
Y” —Y’——(—+——)Y
s 2y Y1
2 ki Y+1
—(Y -1 2( 2Y———)-|~2az——Y=0, (23)
+p2( )la 7 71

in which we identify a particular form of the differential
equation that defines the fifth Painlevé transcendent with the
parameters @ = — 24, B =2k}, y=0, § = — 2a” non-
identically zero®’ (see commentary in the last paragraph).

The functions (@y,...,@, _; ) and (4y,...,u, ), character-
ized by the first integrals (20) and (14), are then connected
functionally to the Painlevé transcendent Y(p). For exam-
ple, we thus have, for v, (p),

€ (PY—1dp

arcsin U, = — , with e=+ 1, 24)
1 )Y + (
and
U, = (1/v)(cos’ o, — ),
k2452 —k? ( ) bf)‘/2
=, =y —— .
2k? k2

Thus at the end of this development it appears that the n
complex fields & ¢ governed by the generalized Ernst system
(6), by assumption of the form ¢ °(p,z) = y*(p)e'™, are de-
termined as functionals of Y= ¢ °{ * defined, by Eq. (23),
as the fifth transcendental function of Painlevé.

IV. ON SOME PARTICULAR CASES—COMMENTARY

The consideration of first integrals (14) and (20) and
Eq. (21) leads us to examine the possibility of various parti-
cular cases corresponding to specific choices of various con-
stants (b;), (k?), and a. Let us look at some eventualities.

(i) When a particular constant b, is made equal to zero
it is without significant effect on the nature of solutions. But
if all the constants b; are made equal to zero and ¢ also, in
virtue of (12), the functions (%;) are then constants; as a
consequence of (7) all the fields { © have the same phase «,
which is a linear function of p.

Another notable eventuality: a choice of (b;) such as
a= — 37_,b; = 0. In this situation, as in the previous one,
the Painlevé transcendent defined by (22), has only two
nonzero parameters.

(ii) The equations governing the functions (w,;) admit
particular constant solutions; we can see that in the example
of (15) and (16). Equation (15) admits the particular solu-
tion w, = const defined by

tan® w, = b,/b,. (25)

This imposes, of course, the same sign for b, and b,. If this
particular solution is used, we also have the possibility of
@, = const, with
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tan2w1 = (b2+b3)/b1, (26)

where b, + b; and b, have the same sign. This process can
naturally be extended to the general case with »n fields,
where, beginning by @, _ ,, it is possible to find successively
a sequence of constant solutions (@, ) characterized by rela-
tions of the same type as the previous ones [ (25) and (26)].

(iii) We finally envisage the situation when the constant
a is taken equal to zero. In this case all the fields £ * depend
only on the radial coordinate p. Instead of this variable p we
introduce v, defined by v = log p, which is a harmonic func-
tion; consequently we have to refer back to our previous
study.? Let us point out, however, some elements of the inte-
gration process in the formalism used here. Equation (23),
with a = 0, can be written in terms of the variable v:

LY (1, 1 yary
dav? 2Y Y-—1/\dv

k2
+2(Y — 1)2(02Y———)—:—)=O. 27

We recognize here a particular form of Eq. 38 of the classifi-
cation of Painlevé and Gambier.%’ Thus the following first
integral can immediately be written as
2
(—‘-21) =4(Y - 1)*(—d®Y?* 4+ 2KY —k?), (28)
v

where K is an integration constant. The calculation is pur-
sued using several ways based on the sign of trinom:
a*+ 2K+ k2.
If a* + 2K + k2 >0, we have
(@*+K)(Y—1) —12]
(K2 . azkf )1/2ly_ 1| ’
EL4 with A=(a®>+2K+k%)V2
If a® + 2K + k2 <0, we have
yY+6+(—fY+2KY—kﬂ”1
¥ —1] ’

22—y = arcsin{ (29)

24,(v—v,) = log[
(30)
with A,=[ — (@®+2K +k%)]'?,
y=(a®+K)/A, 6=A,+7,

and v, an integration constant.

There are again other more particular cases that we
omit. Taking into account (27), we can also give a more
explicit form for the expression (24):

. € J‘Y dy
arcsin U, = —
2k, Jy, Y(—a’Y + 2KY — k?)'/?

(31

or

arcsin U € arcsin( ki —KY + t
= const {.
' 2k, (K2 — k2a*)'%y,
(32)
The calculation of the phases u,,...,u, also could be per-
formed but we think the above statement will suffice.

The values n = 1 and #n = 2 correspond, respectively, to
the vacuum Einstein and Einstein-Maxwell cases. The sep-
arable solutions of Ernst’ equations (6) connected with
these situations are known thanks to the investigations of
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To the complete integrability of long-wave-short-wave interaction equations
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It is shown that the nonlinear partial differential equations governing the interaction of long and
short waves are completely integrable. The methodology used is that of Ablowitz ez al. [M. J.
Ablowitz, A. Ramani, and A. Segur, Lett. Nuovo Cimento 23, 333 (1980); M. J. Ablowitz, A.
Ramani, and H. Segur, J. Math. Phys. 21, 715, 1006 (1980) ], though in the last section of our
paper the problem also has been discussed in the light of the procedure due to Weiss et al. [J.
Weiss, M. Tabor, and G. Carnevale, J. Math. Phys. 24, 522 (1983)] and a Backliind trans-

formation has been obtained.

I. INTRODUCTION

In recent years there have been extensive studies for the
understanding of the complete integrability of nonlinear
partial differential equations. Of late two methods have been
advocated—one is the technique of Ablowitz et al.'? and the
other is that of Weiss ez al.> Although these methods differ in
the actual mode of calculation, and sometimes in the finer
details of the results, in principle, both of these methods are
the same. So here we initially apply the former approach and
show how the “resonances” are formed and the arbitrariness
of the expansion coefficients together with that of the wave
front are deduced. We then discuss how our results fit in the
formalism of Weiss et al.

Il. THEORY

The nonlinear equations under consideration read
(Newell**)

A, =28(BC),,

B,=2B,_=K,A, B+K,AB, +iK,A*B — 2iSBC,
(1

C,=2C,=K,A,C—K,AC, — iK, A*C + 2iSBC>.

The third of this set is really the complex conjugate of the
second; that is B * = C, and here we have followed the nota-

B=¢"3 b, ¢'(x1), (2b)

C=¢”ch $i(x,1). (2¢)

To determine the dominant behavior we initially assume
A ~¢aao, B ~ ¢ pbo, C~ ¢YC0-
So matching the most singular terms in (1) for ¢(x,2) =0

we get a = — 2, 8=y = — 1. Then corresponding coeffi-
cients are related as:
¢tao = 4¢i ’
(3)
Sboco = 245

Now to determine the next-to-leading order terms we
set

A~a0 ¢—2 + a, ¢ '_29
B~by¢~ ' +b, 677", (4)
C~c0 ¢_l + c, ¢r_ !
in the “reduced” set of equations and obtain
[(r—2)¢,1a, + [ —285(r — 2)¢, b, 16,

— 25(r — 2)by d,c, =0,

tion of Ablowitz and Segur.$ (5)
Following the procedure of Ablowitz et al.'* 2[(r— 1)(r —2)¢2 — 28bocy]b, — 2Sbic, =0,
A4=¢"% a; ¢’(x,1), (2a) +2[(r — 1)(r — 2)$% — 28bycy]c, — 2Sc3b, = 0.

]|
This set of homogeneous equation can have a nonvanishing solution only if the determinant is zero, that is,
(r—2)¢, —25(r—2)cy 9, —28(r—2)b, ¢,
0 2i[(r—1)(r—2) — 28byc,] — 2iSh, |1 =0.
0 — 2iSc? 2[(r— 1(r—2)¢? — 28bcy ]
Using Egs. (3) we reduce this to the two equations
(r—N(r—-2)—4= 42,
*) Permanent address: High Energy Physics Division, Department of Phys-
ics, Jadavpur University, Calcutta, India.
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soeither r(r —3) =Q0or (r—4)(r+ 1) =0.Thatis,r =0, 3,4, and — 1. As has been elaborately discussed in the papers by
Ablowitz et al.'? the resonance at r = — 1 corresponds to the arbitrariness of the wave front.

We now proceed to determine the coefficients at the resonance positions. With no loss of generality we assume that
#(x,t) =x — f(¢) and all the coefficients g;, b;, and c; are functions of £ only. We then have

a,= — (4/f,), b, arbitrary, c,=2/5b, (6)
For j>1 we now consider the recurrence relation obtained by linearization with respect to the nonleading terms
J=2)/; 25(j —2)¢o 25(j —2)b, a \ 0
0 2i[(j—1)(j—2) — 28byc,] —2iSh?2 b, |=| —G-20%_,1],
0 — 2i8c; 2[(j — 1)(J—2) — 28bec,] ¢ —U=2¢_1 /.
)]

whenj = 1 we have

-fi =25 — 25b, a 0
0  —4iShe, —2iSh} ( b, )= bof: |,
0 —2iSe?  —4iShyc, A cof;
(8)
which easily yields
a, = —2i/3(const); b, =if,by/12; c¢,=if,/6Sb,.
&)

Now for the first resonance j = 2, we have

0 0 0 4 0
0 —8  —2iSh? (b2)=(o). (10)
0 8i/Sh2 8i c 0

This leads to
a, = arbitrary function of t, b, =c,=0. (1D

At the second resonance for j = 3,

Sfi  4/b, 28ib, a, 0
0 — 4  —2iSh2 (b3 ): -bf 1,
0 8i/Sb} 4i C; —¢f
(12)
which yields
a; =0, b, = arbitrary function of z, c¢;=2b,/Sh}.
(13)
For the third resonance at j = 4 we get
2f,  8/b, 4Sbh, a, 0
0 4i - 2iSh2 (b4)=' —2b,f1. | . (14)
0 8i/Sb? —4i C4 —2c,.f

—

An interesting result that follows from (14) is that we again
et

¢, = 2b,/Sb?

as from the previous set.

We also deduce that
¢y = (1/2iSb2) (4ib, + 2b, f,),
04 = 8b4/_,;b0 + 2ib3/b0, (15)

b, = arbitrary function of time.

At this point it is perhaps not out of place to discuss the
formation of the “resonance coefficients,” if the form of the
wave front ¢(x,t) had been different. Actually we also re-
peated the whole calculation with ¢(x,t) = ¢ + g(x) and ob-
served the following results:

¢; = (by + 12ib,, g, — 18iby g, )/6iSb},

b, = (b, — 12ig, by, + 18ibyg,,)/6iSb}, (16)
a, = (2i/3) g, — 48y 8ux»

a, = arbitrary function of x,

by, = (Sbicon + by, 82)/12g3, (17)
¢, = (Sbico.. — boy 82)/35b% &2,

together with ¢, = 2g2 /Sb,. We will not quote further re-
sults about other g; , b, , and c;’s because they are quite cum-
bersome.

In our above calculations we have clearly demonstrated
that the set of coupled nonlinear partial differential equa-
tions describing the interaction of long and short waves are
actually completely integrable and conform to the Painlevé
test.

Before concluding we show that it is also possible to
consider these equations following the procedure suggested
by Weiss et al.? Substituting the full series (2a)—(2¢) in (1)
we get

SA4 ¢+ 3 (J—2)4,4'"%, =25 T 3 B,C,. ¢/* "2
J m

+2S;;Bjxcm ¢/ 2+ 28 YN (m+j—2)B,C, ¢/, (18)
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3B '+ (1B ¢, ~2Y B ¢’ —4i Y (j— 1B ¢/, — 23 (j—1)(j—2)B; ¢’ ¢

-2y (j— 1B, ¢’ "4 =K, Y 4B, ¢i+m_3+K3zz (j—2)4;B, '™~ 49, -k, ZZAJ' B, ¢/+tm=3

—Ry 33 (m—1)4; B, ¢+ "6, +iK, T3S 4,4, B, ¢+ 5+m~*

—2S ST B, B,C,, $/+ K+,

and a similar equation for C. Assuming ¢(x,t) =f (x) + ¢,
we obtain from the leading tetms a = — 2, B=y= — 1,
A, =4f 2, and C, = 242 /SBy; B, is arbitrary. Then coeffi-
cient ¢ ~2 yields
Ao — Ay ¢, = 2SB,C,, + 258, C,
~ 28ByC, ¢, — 28B,C, ¢,

together with

= — 4iSB,C,B, — 2iSB3C,,

(20)

- CO ¢t - 4iC0x ¢x - 2lc‘O ¢xx

= — 4iSB,C,C, — 2iSB,C3.
So the first Eq. of (20) yields that 4, cannot be determined,

that is, it is arbitrary. But if we assume that4, =4, =« =0
for i > 0, then it reduces to

AO: = 2S(Boco)x’

the original nonlinear equation if we also have B,C,
= — B,C,.
Equating now coefficients of ¢~ we get

A,, = 2SB,C,, + 2SB,C,,
+ 2SB,.C, + 25B,,C,,
By, = 2iB,,. — 2iSB?C,
— 4iSB,B,C, — 2iSB3C, — 4iSB,B,C,,
C,, = — 2iC,,, + 2iSC?B,
+ 4iSC,C,B, + 2iSC2B,,

which clearly indicate the indeterminacy of the coefficients
B,, C,, etc. So if together with the assumption that 4, = O for
i> 1 we also consider B, =0, C; = 0 for j>2 then from the
second and third equations of (20) we get

— Bo¢, + 4iBo, 8, + 2iBo 8, = — 2SB,CoB,,
(22a)

(21)
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(19)
—
— Gy, —4iCy, ¢, — 2iCy $,, = 2iSB,C,C,. (22b)
From (22a) and (22b) we deduce that ¢ satisfies
— ¢, + 2ig,, =0. (23)

Up till now the form of ¢ has been quite general or arbitrary.
The second and third equations of those obtained by equat-
ing ¢° in Eq. (19) yields

B,, =2iB,, = — 2iSB2C,,
C, =2iC,,, =2SC?B,,

the original nonlinear equations. So we have actually dem-
onstrated that it is possible to truncate the series (2a)—(2c)
only with a few number of terms, and can really have’

A=¢"4,,
B=¢""[By,+ B, 4],
C=¢_1[C0+ Cl ¢],

which is nothing but equations connecting two sets of solu-
tions (4,B,C) and (4,,B,,C,) of the same equation and so
can be thought of as a Backliind transformation.
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Realizing the Berezin integral as a superspace contour integral
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Integration on supermanifolds, using contours and the covariant differential forms of Kostant [B.
Kostant, “Graded manifolds, graded Lie theory and prequantisation,” in Lecture Notes in
Mathematics, Vol. 570 (Springer, Berlin, 1977) ], is described; the good properties that these
integrals naturally acquire are considered. It is then shown that the formal process of integration
over even and odd variables introduced by Berezin [F. A. Berezin, The Method of Second
Quantization (Academic, New York, 1966) ] using partly covariant and partly contravariant
forms can be regarded as a special case of these contour integrals over covariant forms.

I. INTRODUCTION

The standard rule for integration over anticommuting
variables

foaa=1, fﬂB:O,

was introduced by Berezin' as a formal process in his work
on the quantization of Fermi fields, and is widely and suc-
cessfully used in the path integral approach to field quantiza-
tion. With the advent of supersymmetry, much greater de-
mands have been put on this form of integration than
originally envisaged, and the formalism stretched beyond its
limits. The aim of this paper is to show that, by realizing the
abstract Berezin integral as a contour integral in superspace,
one extends the possibilities of “odd” integration because the
good properties of conventional integration can be used.
Some steps in this direction have been taken by Rabin?; these
are described in detail in Sec. I1. A very early work by Fairlie
and Martin® describes the Berezin integral as an integral
around a closed loop with “measure” (1/62) d6. Although
1/6? is undefined, the approach taken in this paper owes
much to the spirit of Ref. 3.

The symbol “d6” in (1.1) does not represent a coordi-
nate differential; indeed in order to obtain the rule (1.1) in
all coordinate systems, @0 must transform contravariantly
(like a vector). The formal integration process can be ex-
tended to the case of several anticommuting variables, and
even combined with conventional integration over real var-
- iables in cases where both odd and even variables are present.
The key definition and theorem, due to Berezin and his co-
workers, and clearly presented by Leites,* is the following.
Suppose U is an open set in R™ and 8,...,6" are n anticum-
muting “variables.” Also, given xeU,

[(x,0): =fi0,(x) + 3 £, ()8

(L.1)

+ oot S ()0 O (1.2)

Here a “function” fof the real x’s and anticommuting 8 ’sisa
formal Taylor series in the 8 ’s with coefficients that are func-
tions of the x’s. Then

[[amxars iz, 0: = [ Fotom 2%,
174 U

where the second integral is simply the usual Riemann inte-

(1.3)
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gral. Now, if one allows formal change of variables
y=h(x,6), ¢=1(x0,
with

Y=hix) + ; i (040! 4, i=1,.m,
ki=1

k<l

(1.4)

$=3 qx)0 4, j=1lun, (1.5)
k=1

then the key result, establishing good behavior under change
of variables,’ is

f d™y 34 f(y, $)
ho(UD

=f d"xd"o fh(x,0),m(x,6)]J(x,0), (1.6)
U

where J (x, 8) is the superdeterminant of the matrix M */
(x, 9) with

_an
T ax*’

ah’
a6/

Mk 1<i, k<m,

MiU*rm= I<i<m, 1gj<n,

(1.7)

1<k<m,,

I
M”‘=ﬁ l<l<ns
X

a k
lj+m __ ﬂ, ;

M 30 7’ 1<I 2 J <m .

The result (1.6) is only true if each of the coefficient func-
tions in the Taylor expansion (1.2) of fis C* with compact
support. A valid transformation rule is of course quite essen-
tial to any coordinate-independent definition of superinte-
gration.

In the application of superspace integration to super-
symmetric quantum field theories, one rapidly finds the for-
malism described above too limited. In the first place super-
symmetry involves changes of variable of the form

07 =0'+¢€, (1.8)

where €/ is an odd Grassmann element independent of the
6’s. Thus a more general form of transformation than (1.4)
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and (1.5) is required, and instead of the abstract € variables
a specific Grassmann algebra is needed. Thus one uses the
type of superspace proposed by Volkov and Akulov’ and
Salam and Strathdee,® where the x’s are even Grassmann
variables, the 8°s are odd Grassmann variables, and f(x, )
denotes a function mapping superspace into The Grassmann
algebra. Such a superspace has been extensively discussed in
the literature,”® together with supermanifolds made by
patching bits of superspace together. The necessary adjust-
ment to the proof of the transformation result (1.6) has been
worked out by Fung. His proof is quoted in Ref. 10. But
other difficulties remain, in particular the following.

(a) A much wider class of function is considered in
quantum physics than the C* functions with compact sup-
port that the transformation rule (1.6) requires for its valid-
ity.

(b) Although the formalism allows one to integrate
over superspace, there is no consistent rule for integration
over subspaces when the odd dimension of the subspace is
lower than that of the full superspace. By analogy with the
method for integrating a p-form over a p-dimensional sub-
manifold of a conventional real manifold, one might expect
to be able to integrate a ““( p, g)-form” over a ( p, ¢)-dimen-
sional subspace of superspace. However, this will not work
for the d "x d "6 type of form because the contravariantly
transforming d@ part will not “pull back.” Now, being
forced to integrate over the full superspace of the theory puts
severe restrictions on the dimensions of invariants one can
obtain by superspace integration; particularly in N-extended
supersymmetry this has prevented the construction of ac-
tions as superspace integrals because the high dimension of
the superspace volume element d *x @ *¥ @ means that very
negative-dimensional pre-pre-pre --- potentials are required.
A coherent theory of subspace integration should open up an
enormous number of new possibilities.

(¢) The mathematical theory of integration on conven-
tional manifolds is very elegant; from the fundamental defin-
ition

fw=J o*(w)
o Im

for integrating an m-form » over an m-simplex on some
manifold, nice functorial behavior (that is, good behavior
under change of variable) and Stokes’ theorem follow al-
most automatically.}! Also integration provides a link
between the topological and differentiable structure of a
manifold, and is the key to the “topological” aspects of quan-
tum field theory. It is thus clearly highly desirable to extend
the Berezin formalism to a full theory or integration of “‘su-
performs’ over “superchains” with similarly nice and useful
properties.

Many of the difficulties with Berezin integration stem
from the fact that a “funny” differential from @6 is used.
Now there do exist ordinary differential forms on superspace
(and more general supermanifolds), that is to say covariant
graded-antisymmetric forms. They are described very fully
by Kostant!? and have the useful pullback properties;
further details are given in Sec. II. (Other authors have con-

(1.9)
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sidered these objects, but Kostant’s treatment is the most
detailed, and the most far reaching.)

The aim of this paper is to express the Berezin integral as
a contour integral over this kind of form, because such inte-
grals automatically have nice transformation properties;
thus difficulty (a) can be tackled. A further paper is planned
where the contour approach will be extended to overcome
difficulty (b) and to develop a formalism of the kind envis-
aged in (c).

The outline of this paper is that in Sec. II the general
formalism for contour integrals in superspace is introduced;
here the point of view that superspace is a Banach space
(with additional structure)® is essential. In Sec. III it is
shown how the rule (1.1) for integration over a single odd
variable, and its higher-dimensional analogs, can be ob-
tained by suitable choice of contours. Section IV extends the
approach to mixed odd and even superspace.

. CONTOUR INTEGRALS IN SUPERSPACE

Contour integrals are a means of “pulling back” an inte-
gral in a space that is algebraically (as well as possibly geo-
metrically) more complicated than R™. A familiar example,
of course, is complex contour integration; if y: [0, 1]—>C is
piecewise C, and f: C—C, one has the one-dimensional con-
tour integral

1
ff(Z)d2=f Sfly® 1y (0)de. (2.1
14 0

This involves the algebraic structure of C because the right-
hand side of (2.1) includes multiplication of complex
numbers. .

The key point of this section is that a similar approach to
contour integration—which leads automatically to nice
properties—can be applied to superspace and supermani-
folds, provided an approach is taken where these spaces are
Banach spaces with additional structure. Such an approach
is provided by the “G= supermanifolds” of Ref. 9. (A re-
view of various approaches to supermanifolds is in Ref. 7.)
The Banach space structure is essential for the notion of a C,
map from 7™ (the unit cube in R™) into superspace. Addi-
tionally the Banach space and Grassmann algebra structure
must interplay in such a way that the chain rules (2.7) and
(2.8) are obeyed, which enables differential forms on super-
space to be pulled back to R™. The important ideas and nota-
tion for supermanifolds needed in this paper are the follow-
ing.

(i) The set'> M . This is the set of finite sequences of
positive integers g = (Ut ) With 1<y <ty <o < gl s
|#|: = k. The empty sequence  is included in M _ .

(ii) The “Grassmann” algebra® B _ . This is the Banach
space /, of infinite sequences of real numbers (for conve-
nience labeled by elements of M_ rather than straightfor-
wardly with Z)

x = (Xg, X1y, X2)s X(1,2)90+)

such that

xll: = > |x.|<o.
pHeM
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If, for given u in M, B, denotes the sequence in /, with
x, = 1 and all other terms zero, then one can extend the
multiplication rules

ﬁnﬁp =ﬁpﬁn =Bp’ v l“eMgg H (2-2)
BwBy = —BypBuy, V integers i,j, (2.3)
ﬁl‘ =B(I‘I)B(Ilz) "'ﬂ(yk)’ v /.LGMw ’ 24)

to give /, the structure of a Banach algebra, denoted B_ .
(Full details are in Ref. 9.)

(iii) The (m, n)-dimensional superspace B™ " is the
Cartesian product of m copies of the even part of B and n
copies of the odd part. A typical element is denoted
(x,0) = (x',.,x™0",..,07.

(iv) e: B_—R denotes the unique algebra homo-
morphism that sets the generators f3,,5,,... to zero;
€m »: B "—>R™is defined by

(2.5)

(v) A notion of differentiation of B _ -valued functions
of B7»" can be defined. [For instance, if m =0, n = 1, one
has df /30 defined by

f(6+¢€)=£(0) -f-e%oj—r (8) + O(||e|l* .

Again, full details are in Ref. 9.] Infinitely differentiable
functions are called G © and have terminating Taylor series
in the odd variables. Two important chain rules are (a) giv-
en U open in R™, ¥V open in B7'", and y: U—B 7" with
Y(U)CV, feG=(V), then if y is piecewise C', foy is
piecewise C ! and

m+n
dfoN =3 3GMG Sy i=l.up
=1

(here G, denotes differentiation with respect to the kth
Grassmann variable); and (b) given VCB 24, h: V>B7",
W open in B 7" with (V) C W, and feG * (W), then

€ n (X 50y X™ 0., 07) = [e(x)) ..., (x™)] .

(2.6)

2.7)

m4

G(fom)="3 G(h)oGfoh, I=1,.,p+q. (28)
1

k=
[One can define a topology on B 7" and then define super-
manifolds by a suitable patching of open sets in B7: " (see
Refs. 7-9).]
(vi) Following Kostant,'? if G *(¥) denotes the B
module of G ~ functions on an open set V in superspace, a
vector field is an endomorphism X of G = (V) such that

Xfg=(Xflg+ (—D¥Vifxg, (2.9)
forallf,gin G * (V) and
Xaf=(—1)Xllelg xf, (2.10)

foraltain B_, fin G *(V). (Here | f| denotes the Grass-
mann degree of £, and so on.) In the following der (¥) de-
notes the set of vector fields on V.

(vii) Of great importance to the theory of integration
are the differential forms on V. Again following Kostant,'2a
p-form on Vis a p-linear mapping @ on der (V) such that

(gl""’fglﬁ""gp |(0)

= (-1 E= e | £ o), (2.11)

and
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<§l yrery §i’ §l'+ 1 ""’gp |a))

= (=)l b @) . (2.12)
In the following, 7 (V) denotes the set of p-forms on V,

QN :=G=(V), and Q(V):= ;OQP(V).
L2
(2.13)

An exterior product A and exterior derivative d can be de-
fined on Q(¥) (see Ref. 12). The exterior derivative satisfies
dd =0.

A pform B can be expanded in local coordinates
Z¥=(x,0) as

B =
1IIK<i ,Km+n

The exterior product and derivative take the expected form
in local coordinates. The forms on superspace (and more
generally on supermanifolds) form a bigraded algebra
(there is the “super” Z, grading, as well as the usual Z grad-
ing of differential forms), which is bigraded commutative.
In particular

dx'ANdx = —dx' Ndx',

dé*Ndx! = —dx'NdO*,

dé*NdO'= +do'Nd6*.
[ Among other things, this means that (46 ‘)* may be non-
zero, and there is no upper limit on the degree of a differen-
tial form on a supermanifold.] Under G * maps between
supermanifolds these forms have a well behaved pullback.
Also, if one has a C * map from a real manifold intoa G ©
supermanifold (a possibility, since a G * supermanifold is a
Jfortiori a C ® manifold), then a p-form on the G' * manifold
will pull back to a p-form on the C © manifold. Thus one may
define contour integration of p-forms on an (m, n)-dimen-

sional supermanifold in the following manner: Lety: I >—Y
be piecewise C!, and » be a p-form on Y. Then

fw: =j r*(w) .
Y 1”°

In particular, for a one-dimensional contour y: I—»B %' and
f[:B (:; LB w

f d6£(6) =fo Y (dtflyd)] .

The Banach space property of B is crucial in giving (2.16)
and (2.17) well-defined meaning. As well as reparametriza-
tion invariance of such integrals, one has the transformation
rule

J [
hoy 4

if h: Y—Z is a G ® map of supermanifolds, and o is a p-form
on Z. Also one has Stokes’ theorem

[ o= f a,

ifwisa ( p — 1)-form on Y. These are proved exactly as the
analogous classical theorems are proved, using the fact that

(hoy)Y*o = y*h %o, (2.20)

dz' A - /\dz""f,-l i, (2.14)

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)
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and

d(y*B)=y*dB. (2.21)

In a previous paper,'? contour integrals in even superspace
(first considered by De Witt®) have been described, and a
Cauchy theorem proved showing that the integral of the
function round a closed curve (bounding a region where the
function is G *) is zero. The following example of a contour
integral in odd superspace shows that the Cauchy theorem is
not true for odd superspace. (In fact it is easy to see where
the proof in Ref. 13 breaks down for anticommuting varia-
bles.)
Example 2.1: Let y: I->B% ! be the curve

y(t) = (sin 271) B, + (cos 2mt)f3, . (2.22)

(Recall that £, and B, are anticommuting generators in the
algebra B_ .) Then

f d0=0, (2.23)
Y
but

1
f0d9=21rf — BB, dt= —27B,5,. (2.24)
v 0

This breakdown of the Cauchy theorem means that one can-
not express the integral of an arbitrary function along a
curve simply in terms of functions evaluated at its end
points; this of course is related to the fact that one cannot
antidifferentiate the function f with f(8) = 6. As already
mentioned, Rabin® made the very appealing observation that
the results

f d6 =0 (by Stokes’ theorem) , (2.25)
Y

v f df 0 #0, in general, (2.26)
Y

for any closed curve ¥ is very suggestive of the Berezin rule

(1.11). There are three apparent difficulties with this ap-

proach.

(i) Although f,d6 6 is not in general zero, one is bound
tohave f, d6 6 = c, where cis a noninvertible element of B,
[e(c) = 0]. Thus one cannot simply normalize by dividing
by c. Rabin proposed to avoid this difficulty by defining, for a
given closed contour ¥,

A) =fded0, (2.27)
Y

and then defining [ (8)dé tobe the quantity uniquely
Berezin
defined by

f dé f(0) =A(y) f(6)do,
I d

Berezin

(2.28)

for all y.

(ii) A second difficulty with Rabin’s approach is that it
does not immediately extend to cases where there is more
than one odd variable. For instance, £,6'd6'd6? is not
zerofor an arbitrary closed contour , since 8 ' d6' d9?isnot
an exact form.
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(iii) Also the one-form d@ transforms covariantly, and
thus does not correspond to the @6 of the Berezin integral.

In Sec. III it is shown how Rabin’s approach can be
adapted and applied to integration of several odd variables.
Difficulty (i) is overcome by using the existence of elements
cof B, which, although having €(c) = 0, do not annihilate
any nonzero elements of B, so that division by ¢, where
possible, is unique. Difficulty (ii) is overcome by a careful
choice of contour and (iii) is overcome by brute force.

Iil. ACONTOUR REPRESENTATION OF THE BEREZIN
INTEGRAL ’

The work in Sec. II describes a natural way to integrate
on supermanifolds in a consistent manner; the good proper-
ties of the pullback map allow one to harness the good prop-
erties of standard integration on R™. It is highly desirable to
include the Berezin integral in this general formalism, so
that results can be proved by appeal to general properties of
integrals, and the difficulties (described in the Introduc-
tion), which are encountered when treating the Berezin inte-
gral as a purely formal process, can be circumvented. A pre-
liminary lemma is required.

Lemma 3.1: For each integer n = 1,2,... let the element
¢, of the infinite-dimensional algebra B = be defined by

-]
c’l = z as,n 1
s=1
where
25
= (1/2%)B0s _ tyn 4+ 1Bas— 1yn + 2 Basn

(recall that §;, i = 1, 2,... denote generators of B ). Then,
foreachn=1,2,..andforallain B_,

3.1

ac, =0 ifandonlyif a=0. (3.2)

Outline of proof: The full proof is too long to include
here. The first step is to suppose that g = 2,m_a'pB, satis-
fies

(3.3)

It is easily shown that, if the sequence u does not contain
any subsequence of the form [(2s—1)n+1,
(2s—1)n +2,..,2sn] (where s is some integer) then
a" = 0. Also, by induction over the number of subsequences
in u, one can prove that all ¢ must be zero.

Corollary 3.2: If x = ac,,, then one can set

ac, =0.

(3.4)

unambiguously, and thus give a partial meaning to division
byc,.

Now the first example of a contour representation of a
Berezin integral, that of Berezin integration on B %, will be
described. To do this one first specifies the contour (or more
accurately, a sum of contours, that is, a chain) ¥, and then,
for an arbitrary coordinate system 8 defines the one-formdé,
(Definition 3.3). Theorem 3.4 then establishes that the inte-

gral

a:=(1/c,)x

ifae(y)f(o)

Cy Jy

has all the properties of the Berezin integral.
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Definition 3.3: Let p: B%'—>B%! be a coordinate sys-
tem on B%'. Foreach s = 1,2,..., let ¥,: I—>B%" be the con-
tour such that

POV (t) = (1/2°) (B _, 8int + By, cOS 1) . 3.5)
Also, let
Y= 2 Vs - (3.6)

Now suppose & is some other, quite arbitrary, coordinate
system on B% ', That is,

@=ap+b,

with a an invertible even element of B_ and b an odd ele-
ment. (a) Set @0(y}: = (1/a)d p. (b).Let

f 3650 =L ao) £6) .
‘Berezin ¢

The following theorem establishes that the differential
d@ transforms in the required manner, that is, evaluation of
the Berezin integral gives the required result (and thus is
independent of the choice of coordinate g, relative to which ¥
is defined). And also that the integral (3.7) is invariant un-
der change of the coordinate 6.

Theorem 3.4:

(a) if 36(y)(6p +q) =
Cy Jy

3.7

(3.8)

(if p, q are arbitrary elements of B ).
(b) Suppose ¢: B%'—>B%! is a further coordinate on
BY%'. Then

ap=a0. (3.9)
dg
hog,

(c) If =
f 6(y) f(8) = J'a¢(y)
Proof (a) One has

(3.10)

30/3¢f°h(¢)

ci f 6(7)(0p +q)
1

©©

2 59(7)(6p +4)

L

E dt{(ﬁz;_l cost — By, sint)X—i—

1
I
1
Cy

X [a(ﬁzs—l sint+ B, cost) p +q]]
(3.11)
such that ¢ = ¢0 + d. Thus

=p .
(b) There existc,din B

ap=Ldp=2 2.
ca dé

(c) This follows immediately from (b).

This completes the description of the contour approach
to Berezin integration over one variable. For several varia-
bles the approach is similar but inevitably more complicated.
Again the first step is to specify a chainy = £2_,, on B%",
and then to define 7 "¢ with reference to the coordinate sys-
tem in which y has a simple form.

(3.12)
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Definition 3.5: Letp = ( p',..., p" ), withp: B% "B %",
bg: a coordinate system on B%". For each s =1, 2,.., let
¥,: I"—B%" be the map such that, for k = 1,...,n,

pkoy.v(tlr'")tn) =B(2_,_1),,+2k__1 Sintk

+Bzs— 1yn 426 COSTE. (3.13)

Then, if 6 = (8,...,0") is another (arbitrary) coordinate
system on B%”

(a) d"9(y)=1/Jdp"--dp',
where
J =det (30 ) (3.14)
dp’
(b) aef(',..om
Berezin
=1 as"(y) (6.6 . (3.15)

Cn Y
Again, a theorem is proved to establish that evaluation

of the integral defined in (3.15) gives the required result
(independently of the choice of coordinate system p in which
y takes a simple form), and also that the “volume form”
d"0--d0@! transforms correctly and that the integral (3.15)
is invariant under a change of coordinate.

Theorem 3.6: (a) If £ B% "B _ with

f(6',..,0M =8 192...9 "p + lower-order terms,

(3.16)
then

1 f a

Cn Jy

(b) If ¢ = (4,...,¢") is a further coordinate system on
B%" then

a6
ar 3"0(y) xd t( )
8(r) =80 xde S
(c) If 6 = hop, and g: B%"—>B_ ,
f 2"9(y)2(6)
Berezin

1
= ar ———I[g°h .
J;erezin ¢(Y) det(ae '/3¢’) [g (¢) ]
Proof: (a) In the particular coordinate system p

"9(y) f(6,...8™) =p (3.17)

(3.18)

(3.19)

ci 3" p(1) fphp™ =1 » (3.20)
n vY

by direct calculation. Thus to establish (3.17) in an arbitrary
coordinate system, it is sufficient to prove that

1

8! "X ——————=p' .. p" + lower-order terms ,
det(36°/d p’)
(3.21)
and that when
09 .. 0%x 1 (with k <n)

det(36/3 p”)
is expanded in terms of the p', there is no term containing
p' -~ p". The facts are essentially proved most elegantly by
Fung (quoted by Van Niewenhuizen'?) in the course of his
proof of the transformation rule of the Berezin integral.
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(Other proofs in the literature do not include all necessary
cases, because they omit the possibility of translations of the

P

(b)dg(y)
,, 1
= d p “oe dpl X'd _et(a¢’/ap1)
=dp"dp'X 1. X L :
det(3p'/36%) det(30* /3 p’)
—a"6(y) Xdet(ae’.() . (3.22)
ad

(c) The result follows immediately from (b).

IV. COMBINING THE BEREZIN INTEGRAL WITH
INTEGRATION OVER EVEN VARIABLES

As mentioned in the Introduction, the Berezin transfor-
mation rule (1.6) is not always valid if the coefficient func-
tions in the f-expansion of the integrand do not have com-
pact support. In a previous paper,’* the author has shown
how some of the difficulty can be alleviated by treating the
even part of the integral as a contour integral in even super-
space (as suggested by De Witt?) rather than simply ignor-
ing transformations in nilpotent even directions. The theory
presented in Ref. 13 is an uncomfortable hybrid of contour
integration over even variables and formal integration over
odd variables, and the hope was expressed that the odd inte-
gration could be incorporated into the contour approach and
thus odd and even integration more happily married. Clearly
with the approach outlined in Sec. III this should now be
possible. Vladimirov and Volovich'* have also considered
integrals on even superspace; they express the Berezin inte-
gral in odd superspace as an integral on R", but not explicitly
as a contour integral.

First, two examples are presented showing how the Ber-
ezin transformation rule breaks down when the integrand
does not have compact support.

Example 4.1. Integration on B} '
1

(a) dydgy=0. (4.1)

0
Berezin

Set
y=x+6a (a#0), 0=4¢. (4.2)

Then, [according to the rule (1.6)], the integral (4.1) be-
comes

1

o dxdf(x + 6a) =a#0. (4.3)
Berezin
1
(b) J-o dy3¢y2¢=%- (4.4)
Berezin
Set
y=x+6a (a#0), ¢=pBx+6(8+#0). (4.5)

Then, [according to the rule (1.7)], the integral (4.4) be-
comes
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1
[0 @xa801+aB)(x +00)(Bx +0) =+ + 2ap.
Berezin
(4.6)

These examples show that the contour approach (which cer-
tainly will provide a good transformation rule) must alter
either the rule for calculating dx d@ in terms of dy d¢ or the
rule (1.3) for evaluating the integral. Really the difficulty
stems from the fact that there are already ambiguities pres-
ent in purely even superspace integration'?; this is because
different contours in B ™ ° may project down onto the same
region in R™. This ambiguity also shows up in the following
definition of integration over a “region” in superspace.

Definition 4.2: (a) A mapping o, I™*">B™" js
called a Berezin s-contour with fiducial coordinate system
x = (rp)if

(i) yeo,=7X¥,, 4.7)
where 7: I "—B ™ ° with

eor(tl,..,t™) =eor(t’,...t™), (4.8)
only if

@hnt™ =("t™) (4.9)

[a typical element of ™ * " is denoted (¢ 1,....t ™ u',..,.u™)]; v
and

(ii) 7, I"—>B%"
is as defined in Definition 3.5.

(b) The formal sum

a=§a,

is called a Berezin chain with fiducial coordinate system y.
(c) Given any other coordinate system ¥ = (x, 8) on
BT,

(4.10)

[d™xd@"0]1(0)d™rd"pX J, (4.11)
where J = superdeterminant (M /) with
M=% (4.12)
'

[In the future J will be denoted superdet (d¢//dy’). Equa-
tion (4.12) makes it clear which is the row index and which
is the column index. ]

(d) Given UeR™ and fi ¢,; 1 (U)—B,, ,

d™x d"0 f(x, 6)

U
Berezin

==f [d™xa@"0 (o) f(x,6), (4.13)
where o is as above, and additionally

€m, n Y0, (U™ ") =T, (4.14)

foreachs = 1, 2,... . [The notation f(x, &) really means foy;
it seems preferable to use the accepted notation. ] Note that
by setting # = 0, one has a definition of integration in the
purely even superspace B ™ °, coinciding with that of Ref. 13.

The following theorem proves the transformation rule
for the Berezin integral. (Once again, in this formalism, this
is almost trivial.) It also shows how near the value of an
integral defined by (4.13) comes to the Berezin value (1.3);
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and to what extent the integral depends on the choice of
coordinates systems y = (7, p), in which the contours o,
take the simple form (4.7). (The lack of complete coordi-
nate independence might seem fatal, making it impossible to
define an integral on a general supermanifold. In fact an
equivalent difficulty applies to the standard Berezin inte-
gral'>1%; it is not such a difficulty as it might appear, for
reasons that are explained below.)

Theorem 4.3: The notation of Definition 4.2 is used.

(a) Suppose that ¢’ = (y, ¢) are a further set of coordi-
nates on B7'". Then

‘k
[dmyd"$] (o) = [d™xd"8 ] (o) X superdet (Z/} .
(4.15)
(b) Ifh: B™"—>B"™",
h=yoy ", (4.16)
,Lm,..h [&m nt)] dmxd"6f (x,6)
Berezin

=J;e:md"'y3"¢superdet (‘Zp—;)th(y,qﬁ).

4.17)
(c) If the coordinates ¢ = (x, 0) satisfy
% =0, i=1l.,m; j=1l,.n, (4.18)
and
fix,0) =f™(x)8! .. 0" + lower-order terms,
4.19)

then

J y 4™xd"0f(x,0) =f d™x f ™ (x), (4.20)
. U
where the second integral is to be regarded as an integral on
B0
(d) If f has a 0 expansion (with each coefficient func-
tion of compact support contained in U),

f , dmx@"9fix, e)=fd"'xf<"’(x). (4.21)
. U

Berezin
Proof: (a) and (b) are immediate.
(c) Choosing o as in Definition 4.2,

f , d7d"0f(x,6)

Berezin

= f d™rd" p superdet (é—w—i) f(x, 6) (4.22)
(- ax’

= J. o*(d™r)o*(d"p)o*
ym+na

rw
X( det(ax’/dr’)

det(36%/aph T 0))

(4.23)
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=\ dt‘---dt'"det(ﬂ)(t‘,...,t'")

m att
3x' 1 1
X det (—,-)(rOU(t et ) P [x (2t ™ ]
ar’
(4.24)
=j dmx f(x), (4.25)
o

where this last integral is an integral on B™° with
x00’(¢1,....t™) = kor(t',....t™), where 7 is a factor of yoo
(Eq. (4.7)] and k: B™°—B™° is defined by
x = kor.
The result follows.
(d) Choose intermediate coordinates ¥’ = (», ¢) such
that

(4.26)

x=y and ¢=p. (4.27)
Then
J-U d™xd"f f(x, 6)
Berezin

[, amwasroo -4
Berezin
+ lower-order terms

= f d™yd"g[ £ (y)g" - ' + lower-order terms]

- “J At e dt™ du" o dy!
!m+n

s=1

X [f(")(J?(O}(t, u)))XPI"a’s(“) - p"oa’(u)
+ lower-order terms]
i\ dp"e dp'o
Xdet(ﬂ)x poo, 9P
at! ou" ou'
Now for each ¢ in I " it is possible to replace this integral by

(4.28)

f dt' - dt™du e du[ f P [h(£)]1 Xp () (4.29)
ym+n

i
+ lower-order terms] X det (—‘;}:—’(t))

% dp"ca, dp'oo,
ou" ou’

s

where
ylo(t, u)] =yoy ~'[reo (1), poo(u)]
= h(t) + terms involving u .

This is because the change from (4.28) to (4.29) involves
changing the even part of the contour. Because the Cauchy
theorem holds for even contour integrals,'? this change is
equivalent to integration over an interpolating contour.
Since f has compact support contained in U, the value of this
interpolating integral will be zero. ]

V. CONCLUSIONS

What has been achieved? The main result is the expres-
sion of the Berezin integration as a particular case of a much
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wider type of integration, the incorporation of the formal
Berezin integration process into the most natural type of
integration on superspace. By putting even and odd integra-
tion on an equal footing, results such as Theorem 4.3 are
much more easily proved than formerly.

But, as explained in the Introduction, the aim of this
paper was to lay down foundations for a much broader the-
ory of integration on supermanifolds. Future papers will
consider applying the contour integration methods of this
paper to general supermanifolds and subsupermanifolds,
and investigating the relation between integration and topol-
ogy. The lack of full coordinate-independence of the defini-
tion of integration (Definition 4.2) does not preclude inte-
gration on as wide a class of supermanifolds as one might
have thought, because in practice many supermanifolds ad-
mit subatlases where the transition functions have the new
even coordinates independent of the old odd coordinates.'S
A full investigation of this matter is underway. Obviously
the contour approach here can handle integration over sub-
supermanifolds as easily as full supermanifolds; a p-form on
a supermanifold can always be integrated over a mapping
from I°? into the supermanifold. The interesting question is
whether any Berezin-type theory of integration on subsuper-
manifolds can be developed as a special case. Finally, the
question of the topological aspect is most intriguing. The
lack of a Cauchy theorem for odd superspace integration
certainly destroys any hope of the usual homotopy-based
results, but this should not matter since many supermani-
folds are homotopic to the underlying manifold, being effec-
tively vector bundles over this manifold; it remains to be seen

77 J. Math. Phys., Vol. 27, No. 3, March 1986

if integration can probe the vector bundle structure, and also
the topology of supermanifolds that are not simply vector
bundles over some conventional manifold, but have patch-
ing in the odd directions.’
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Resolving the singularities in the space of Riemannian geometries
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A method is described for unfolding the singularities of superspace, &% = .#7/.7, the space of
Riemannian geometries of a manifold M. This extended, or unfolded superspace, is described by
the projection F'z y, = (#XF(M))/ D —.#/F = &, where F(M) is the frame bundle of M.
The unfolded space Z,,, is an infinite-dimensional manifold without singularities. Moreover,
as expected, the unfolding of &, at each geometry [ g,]€.7 is parametrized by the isometry
group I, (M) of g,. The construction is completely natural, gives complete control and
knowledge of the unfolding at each geometry necessary to make Z,,,, a manifold, and is
generally covariant with respect to all coordinate transformations. A similar program is outlined,
based on the methods of this paper, of desingularizing the moduli space of connections on a

principal fiber bundle.

I. INTRODUCTION AND BACKGROUND

Let Mbea C> compact connected n-dimensional mani-
fold, 2 = Diff(M), the ILH (inverse limit Hilbert) Lie
group of C* diffeomorphisms of M, and .# = Riem (M),
the ILH manifold of C* Riemannian metrics on M. Then &
acts naturally on the right on .« by pullback

V: M XDM, (8NH—f*8.
The resulting orbit space
G =H/D

of isometry classes of Riemannian metrics is the space of
Riemannian geometries of M.

The space & has been of considerable interest both to
physicists and mathematicians for some time. Forn = 3, &
is Wheeler’s superspace,’ the natural configuration space for
a possible quantum theory of gravity. On the mathematical
side, Palais? and Ebin> gave a detailed analysis of the action
of ¥, culminating in the Ebin-Palais Slice Theorem. These
results were used in investigations by Fischer,* who showed
that & is stratified by manifolds with the strata being labeled
by the conjugacy classes in & of the isometry groups I, (M).
Later, Bourguignon® gave further mathematical details of
these results. _

Unfortunately, the space & is not in general a manifold,
inasmuch as Riemannian metrics may have isometry groups
with different dimensions or different numbers of connected
components. Since the isometry groups are the isotropy
groups of the action ¥, these differences cause the orbit
space & to have singularities, complicating its structure.

In this paper, we resolve the singularities in & by con-
structing a manifold % ,, that covers ¥ by a projection

Ty 9 FM—-)g

that is continuous and open, and such that for each [ gle ¥,
71 ([ g]) is a finite-dimensional closed submanifold of
Y u- The pair (9 o, , ;) is a resolution of the singulari-
tiesof 9 ,and ¥ p,, is the resolution space. In this resolution,
the “fibers” 7, ([ g]) are a measure of the singularities in

¥ . Our construction is completely natural, as we now briefly
describe.
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Let F(M) denote the frame bundle of M. Then ¥ p,, is
constructed by enlarging .# to the product space
M X F(M) and considering the right action of & on the
enlarged space

(#XF(M)XD—> M4 XF(M),

((&u), fy—=>(f*8 f*u),
where f*u = f~'(u) and f: F(M)—F(M) is the natural lift
of a diffeomorphism f€Z to the frame bundle F(M). The
advantage of introducing the action of & on # X F(M) is
that this action is now free, for if ( f*g, f*u) = ( g,u), then
feI (M) isanisometry of gand f fixes the frame 4. Butby a
classical theorem of Riemannian geometry, an isometry of a
connected manifold that fixes a frame must be the identity
(see, e.g., Helgason,® p. 62). Thus f = id,, and the action is
free.

In Sec. III we show that the resulting orbit space

Gy = (M XFM)V D
is an ILH manifold which naturally projects onto ¥,

Ty gFM—’gs [(gvu)]H[g]‘

Moreover, for [ gole¥, the “fiber” 77 ([ go]) C Y par is
diffeomorphic to the (n> + n — k)-dimensional orbit mani-
fold

I, (M)\F(M),
where k = dim I, (M) and I, (M) acts on F(M) on the left
by push-foward of frames

I, (M) XF(M)—F(M), (4, f > J(u) .

Note that if ¥ = .# /% were a manifold, then .#—%
would be a & -principal fiber bundle (PFB) and

G e = M XFEM) DG = M/ D

would be the associated fiber bundle with standard fiber
F(M) over the base space &. Although .#—Y is not in
general a principal fiber bundle, this point of view is useful in
motivating our construction (see discussion preceding Pro-
position 3.6 and the discussion following Theorem 6.1).
Our construction of ¥ p,, is related to the following
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construction (see Sec. IV and also Ebin,* Fischer,® and
Bourguignon®). For a point x,eM, let

D, ={feD|f(xo) =x, and T, f=1I_}

denote the subgroup of Z that fixes the point x, and whose
derivative at x,, T, f T, M—T, M, is the identity I, iso-
morphism of the tangent space T M. Then &, isa closed
ILH Lie subgroup of & and acts on .4 by pullback

MXD > M, (8f)>f*g.

This action is free (for the reasons stated above) and the
orbit space

G =MD},
is a manifold which naturally projects onto &,
mY,—~9, (g)—lgl.

If [ go]€¥, then the “fiber” 77 ([ g,]) can be canonically
identified with the double coset manifold

I, ( M)\D/ D}, ={I, (M)ofo D, |feD}.

Moreover, if a frame uye F(M) is chosen, then there isa
diffeomorphism

duzl:gFM_)yxo’

which maps fibers of & r, to fibers of &, diffeomorphical-
ly [Proposition 6.2; if M is nonreversible, F(M) must be
replaced by F ;" (M); see Sec. II].

Thus the resolutlon Y evy— % may be thought of as a
canonical resolution, and for each xeM, there is a particular
resolution ¥, —¥% . If a frame u at x is chosen, then u in-
duces a “representation” d [ ': ¥ ;,,— %, of the canonical
resolution space & g, onto the particular resolution space

9.,.
Although ¥ ,, and ¥, are diffeomorphic (not canoni-
cally), the construction of ¥ r, is more geometrical and
natural than the construction of &, inasmuch as we do not
need to fix a point, thereby giving such a point a preferred
status, and we do not need to restrict to diffeomorphisms in
.. Thus the construction of ¥ g, is generally covariant,
i.e., is covariant with respect to all diffeomorphisms, where-
as the construction of ¥, is covariant only with respect to
the subgroup & ;. These considerations are of importance in
applications in general relativity.
We also consider other relationships between & g, and
9 .. In particular, we show that & p,, is the base space of a
Z-PFB (principal fiber bundle) .# X F(M)—% g, (Sec.
III) and that &, is the base space of a Z.-PFB .4 — %,
(Sec. V). Moreover, for each frame u at x there is a reduction
of the & -PFB to the & |, -PFB. These relationships are sum-
marized by the commuting pentagon (see Sec. VI)

./f -4 X F(M)
9; 5
~o— ™

Lastly, we construct a fiber bundle (see Sec. VI)
E=E(M, 9 gy, GL(n), F(M))
= (F(M) X % g )/GL(R)

over M with standard fiber ¥ p,,, with projection
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g E->M,

and which is associated to the frame bundle F(M). Each
fiber 7z '(x) in this bundle can be canonically identified
with &, so that '

E=vu ¥,
xeM

Moreover, for a frame u at x, the usual identification in the
construction of an associated fiber bundle of the standard
fiber with the fiber at x

G oy—G  =7g 1(x)

is given by d .~ !. Thus we have constructed a bundle E—->M
whose standard fiber is the canonical resolution space & .
and whose fiber at x is the particular resolution space &, .
Thus E provides a bundle point of view for tying together the
canonical resolution space ¥ r,, with all of the particular
resolution spaces &, , xeM. Inasmuch as E is the totality of
all the particular spaces, £ may properly be deemed to be the
grand resolution space of & .

Throughout this paper we shall be dealing with infinite-
dimensional manifolds of C* mapssuchas.#, %,and &,
submanifolds of these spaces, and maps and diffeomor-
phisms between these spaces. When considering such mani-
folds and maps between such manifolds, we shall always take

‘manifold,” “submanifold,” “map,” and *“diffeomorphism”
in the ILH sense (see Omori,” Ebin,> and Ebin and Marsden®
for further details regarding these spaces).

. SOME GEOMETRY OF THE FRAME BUNDLE

Throughout this section, M will denote a C* connected
n-dimensional manifold, but not necessarily compact. Let

Tena: FOM)—M

denote its frame bundle, a GL(n#) = GL(n, R) principal fi-
ber bundle (PFB) over M. By differentiation, a dlﬂ'eomor-
phism f: M—M has a natural lift to an automorphism f
F(M)—F(M), wherefmaps the frame u = (vy,..., , ) at x,
v;€T, M, 1<i<n, to the frame f(u) = T fvys Tofv,) at
Sf(x). The lift i covers f, i.e., TpyOf =fompy, and if
AeGL(n), flu-A) =f(u)-A, or foR, =R of, where R,:
F(M)—F(M) is the diffeomorphism of the frame bundle
corresponding to 4. We let AUT (FM) denote the group of
automorphisms of the frame bundle, so that f € AUT(FM).
Then the natural lift induces a group monomorphism

D—AUT(FM), f—Ff,

since if £, £,62, F o = J,F,.

Similarly, if Xe #° (M) is a vector field on M, the natural
lift of X is a vector field X: F(M)—T( F(M)) on F(M), de-
fined by

A d ~
X(u) =d_ﬂ.ﬁ1 (#)|1_0€T, F(M),

where ueF(M), X = gy, (#)EM, and £, is the local one-
parameter flow of X of local diffeomorphisms in a neighbor-
hood of x. The natural lift satisfies (R,), X=X, ie.,
Xe# oL (FM), the Lie algebra of GL (n)-invariant vector
fields on F(M). Moreover, with respect to the Lie bracket of
vector fields on M and on F(M), the natural lift induces a Lie
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algebra monomorphism
Z(M)>Z iy (FM), XoX: FIM)—T(F(M)).

The group monomorphism f -—»}induces aleft action of
2 on F(M),

DXF(M)—F(M), (fu)—>fu),

the action of push-forward of frames. If we pretend that & is
a Lie group with Lie algebra £”(M), then the Lie algebra
monomorphism X +— X can be interpreted as the infinitesi-
mal generator of this action. Note that the Lie algebra struc-
ture on #° (M) given by the usual bracket of vector fields
corresponds to the right Lie algebra structure of &.

For a frame ue F(M), let

D, ={fD|fu) =u}
denote the isotropy group at u of the action of & on F(M),
the subgroup of diffeomorphisms that fix the frame u. If
feZ ,, then fmust fix the base point x = 7, (#), and since
u = (vyy..., U, ) are linearly independent, T". £ T M—T . M
must be the identity I, of T, M. Thus if x = 7, (u),

D, =D, ={feZ|f(x)=xand T.f=11}.

If M is orientable, then the frame bundle consists of two
GL?(n)-principal fiber bundles, say F * (M) and F ~ (M),
where GL(#) is the connected component of the identity of
GL(n). Let Z* CZ denote the group of orientation-pre-
serving diffeomorphisms of M. Then &+ acts transitively
onboth F * (M) and F ~ (M). Thus if there exists an orienta-
tion-reversing diffeomorphism of M, then & acts transitive-
ly on F(M), and thus if ueF(M) is a frame at x, then

DID,=D/D,—~FM), D.—fu)

is a bijection. If there does not exist an orientation-reversing
diffeomorphism, then & = Z* and & is transitive on
F* (M) and F~ (M) separately, but is not transitive on
F(M). In this caselet F ; (M) denote the bundle of oriented
frames that have the same orientation as « [i.e., the bundle
F* (M) such that ue F+(M)]. Then

DID, =D/D,—F; M), D.—f(u)

is a bijection. We shall say that M is reversible if M is orienta-
ble and there exists an orientation-reversing diffeomor-
phism, and M is nonreversible if M is orientable and there
does not exist an orientation-reversing diffeomorphism (see
Fried® for examples of nonreversible manifolds).

If M is not orientable, then F(M) is connected, and so
& is transitive on F(M). In this case,

D/ID, =D/D,—~FM), oD, —fu)
is a bijection.

The above bijections are interesting inasmuch as they
represent the frame bundle as a homogeneous space. In Sec.
IV, we shall show that if M is compact, then the coset spaces
D/, are manifolds, and that they are diffeomorphic to
F(M) [or F .} (M)].

Now let g be a Riemannian metric on M, let I" denote its
associated Levi-Civita connection on F(M), and let w de-

note the corresponding g/{n) = zAn; R)-valued connec-
tion one-form on F(M). Let

7: g8ln) X gln)—>R, (C, D)—tr(C*'oD)
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denote the “Euclidean” inner product on g#{n). Here C*
denotes the transpose of C with respect to the Euclidean
metric on R”. In coordinates,

(D)= ¥ C;Dj.
ij=1
The metric g, its Levi-Civita connection one-form w,

and the inner product ¥ induce a natural Riemannian metric
g on F(M), defined by

&= (Tm)g+v(0ew),
so that if ue F(M) and Z,, Z,eT, F(M), § is given by
8w)(Z,,Z,) =g(T,7ppgZy, Ty Tem+Z,)

+ viw(Z,), w(Z,)).

Note that if 4€0(n), R g = &, but that g is not invar-
iant by GL(n). Also, the projection 7z,: F(M)—M is a
Riemannian submersion with respect to the Riemannian
metrics & on F(M) and g on M.

Let

I, (M) ={feD|f*g =g}
denote the Lie group of isometries of (M, g), and let
I (M) =T,(I, (M)
={XeZ(M)|Lyg =0 and X
is a complete vector field}

denote its Lie algebra of complete Killing vector fields (or
complete infinitesimal isometries), taken with the Lie alge-
bra structure given by the usual bracket of vector fields. This
Lie algebra structure correponds to the Lie algebra of right
invariant vector fields on I, (M).

I, (M) acts on M on the left as a Lie transformation

group,
I, (M) XM—M, (f x)—f(x),

and the action can be lifted to a left action of I, (M) on
F(M),

I, (M)XF(M)—F(M), (fu)—f(w)
(see Fig. 1). The infinitesimal generator of this lifted action
is given by

I (M) > Loy FM), XX,

For ueF (M), let

Xut B, (M)—>F(M), f—F(w)
denote the orbit map through u, and let

T, () = {f )| fel, (M }CF(M)

denote the orbit through u. Then y, is a smooth map with
derivative at the identity e = id,,€l, (M) given by

T,x.: o ()T, F(M), X—X(u).
Let
ffg (u) =range Ty,
= {X(u)eT,F(M)|Xes , (M)}CT,F(M) .

The following computation will be of use.
Lemma 2.1: Let feZ . Then

'}(f—'w (fw)= T.,f-(}g(u)).
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Prooff The isometry group of (f ')*g is
I fmiyeg (M) =L (M)of~!, and so ;s (M)
=f,7, (M)). Thus if Xe 2 (M),

LX(Fw)= (1.2 (Fw)
=T, PXoJ=\(F () = T FX(u) .
Thus
T roiyeg (F @) = £l T ()
= (£ X\F W) = T.JXw) | Xer , (M)}
=TI (M)). O
Concerning the action of I, (M) on F(M), we have the

following theorem.
Theorem 2.2: The action

I (M) XF(M)—>F(M), (fu)— f(u)

of push-forward of frames is smooth, free, and proper. For
ueF (M), the orbit

T, (w) = {fw)| fel, (M)} CF(M)

is a closed submanifold of F(M) with tangent space at
u, = f(u)el, (u) given by

I () ={X(u) | Xef y (M)} =T, (I, (0)).
The orbit map

Xu: Ly (M)—1I, (u) CF(M)
is a diffeomorphism onto its image.

With respect to the metric § =%, g + v (00 w),
I, (M) acts on F(M) as a group of isometries.

Proof: The smoothness of the action is a consequence of
the smoothness of the action of 7, (M) on M. The action is
free, since if f(u) = u, then f(x,) = x,, where x, = 75 (u),
and T, f= I, .Sincefisanisometry (and M is connected),
[fis the identity.

To show properness, we must show that the map

I, (M) XF(M)—F(M) XF(M), (fu)—(u, f())

is a proper mapping, i.e., that the inverse image of a compact
set is compact. Equivalently, if (¥,,, f, (#, )}—>(ugu,) con-
verges, then £, has a convergent subsequence in 7, (M). But
u,—u, implies x, =mpy(u,)—Xo= Try (%), and
o (u, )—u, implies £, (x, )—x, = 7y (). Then, by the
properness of the action of I, (M) on M, f, has a convergent
subsequence in I, (M).
Since the action is free, the orbit map y,:
I, (M)—F(M) is an injective immersion, and so the orbit
’I\g (u) is an immersed submanifold. Since the action is prop-
er, the orbit mapping is a closed mapping, and hence is a
homeomorphism onto its image. Hence the orbit /, ( u) isa
closed submanifold and y,, is a diffeomorphism onto 7, (u).
Atu, = f(u)el, (u), the tangent space T, (I, (u)) = range-
T, xu, =F¢(u) =T, f(F,(u)), where the last equality
follows from Lemma 2.1 (since f*g =g).
Lastly, for any diffeomorphism feZ,

I =F "t g+ (0ew))
=l (F*) + 7 (Froof*0).
Thus if fel, (M), f*g =g and}"*w =, so_;‘*§=§. Thus
I, (M) acts as a group of isometries on F(M) with respect to
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the Riemannian metric 2. ]
Since the action of I, (M) on F(M) is smooth, free, and
proper, and is a group of isometries with respect to the Rie-
mannian metric g, a standard construction asserts the exis-
tence of local cross sections that are orthogonal to the orbits,
and that are equivariant with respect to the action (see, e.g.,
Palais,'® p. 108). These local cross sections are constructed
as follows. Let exp, (u) denote the exponential map of & on
F(M) at ucF(M), and let N, C T, F(M) denote a normal
neighborhood of the origin of T, F(M). Thus

exp, (u): N,—F(M)
is a diffeomorphism onto a neighborhood of #. Now
J (W) CT,F(M) is the tangent space at u to the orbit
I, (u). Let £, (u) CT,F(M) denote the orthogonal com-
plement to ., (#) with respect to the inner product £(«) on
T,F(M). Thus we have the orthogonal direct sum

T,F(M) =7, () eI (u)

(see Fig. 1). Then a local cross-section at # for the action of
I, (M) on F(M) is given by

C, = exp, () (N,,n.?; (0))CF(M) .

The following properties of these local cross sections are
standard.

Proposition 2.3: The subspace C,, given above is a closed
submanifold of F(M) containing #, and C, has the following
properties: (1) C, is orthogonal to the orbit I, (), i.e.,

T,C, =FL(u);

(2) C, is equivariant with respect to the action of I, (M) on
FM),ie.,if fel, (M),

Cray =AC.);
and (3) C, is a local cross section for the action, i.e., (3a) if
Sfel, (M) and f(C, )nC, #, then f = id,,, and (3b) when
restricted to C,,, the action

I (M) XC,—F(M), (fu')—f(u')

is a diffeomorphism onto an open invariant neighborhood of
the orbit I, . O

(F(M),8)

/& T, (u) = orbit through u

},(u) = tangent space
tof,(u)

C, (g) = local cross section

[ TEM

M) x \ I, (M)x = orbit through x
I
FIG. 1. The action of I, (M) on F (M).
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Remarks: (1) The usual properties of a slice for a group
action (see, e.g., Palais'®) are restricted to properties (3)
and (4) above when the action is free, i.e., when the slice is a
cross section.

(2) We shall also need to know the behavior of the cross
section C, under the action of &. For this purpose, let
C, (g) = C, denote the cross section with its dependence on
g explicitly displayed. For f€Z, the exponential map exp,
satisfies

eXpj-1yep (fl1)) =Fexpy (u)-(T,F) 7",

so that the cross section satisfies
Crw (S 71)*8) =F(C.(8)).
Note that property (2) above follows when fel, (M). O
The following assemblage of results is a corollary of the
existence of the local equivariant cross sections constructed
above (see, e.g., Abraham and Marsden, ' pp. 266 and 276).
Theorem 2.4: For the action of I, (M) on F(M),
I, (M) XF(M)—F(M), (fuy—f(u),
the orbit space
I, (M)\F(M)
has a smooth manifold structure such that the orbit projec-
tion map
m: F(M)—I, (M)\F(M), u— [u]
is a submersion. Moreover, for ue F(M),
kerT,7m=T, (I; (u))= .%g (u)
and
range T, 7w = T, (I, (M)\F(M))
= W\T FIM) =T (u) .

The submersion 7: F(M)—I, (M)\F(M) has the
structure of a smooth (left) principal fiber bundle with total
space F(M), base space I, (M) \ F(M), and structure group
I (M). i

IIl. RESOLVING THE SINGULARITIES IN ¥

Throughout the rest of this paper, M will denote a C*
compact connected n-dimensional manifold. We now com-
bine the action of & on .« with the action of & on F(M).

The resulting orbit space will resolve the singularities in
MDD

Dual to the left action of & on F(M), we have the right
action of pull-back of frames by diffeomorphisms,

F(M)XD—FM), (u, i fru=(H""(u).

On the product manifold .# X F(M), & then acts on the
right by pull-back,

D: (M XF(M))X D—M XF(M),
(&), )~ (f*g, f*u) .

With respect to the ILH manifold structures of .# and &,
this action is ILH smooth (see Ebin®).
For ( gu)ed X F(M), let

Piou: DM XF(M), fr> (f*8,f*u)
denote the orbit map at (g,u), and let
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O ey =Py (D) ={(f*8.f*u)| feD}C M XF(M)

denote the orbit through (g,u). For fe<, let
D, =f* M XF(M)—>MXF(M), (gu)— (f*8f*u)

denote the diffeomorphism of .# X F(M) corresponding to
/
Let
S,(M) =C* (T*M® 4, T*M)
denote the space of smooth two-covariant symmetric tensor
fields of M. Since .# is open in S,(M), the tangent space of
M atgis
T, 4 ={g}XS,(M)=S,(M),
which we identify with S,(M). Thus the tangent space of
MXF(M) at (g, u)ed XF(M) is taken to be
Tigu (M XF(M)) =T, 4 XT,F(M)
=S,(M)XT,F(M)
=S,(M)e T, F(M),

where we take the tangent space with its direct sum struc-
ture.

The orbit map P, ,, is smooth with derivative at the
identity eeZ given by

T, 9., : Z(M)>Ty,, (4 XF(M))
=S5, (M)XT,F(M),
X—Lyg —X(u),

where ¥ is the natural lift of the vector field X. Thus the
infinitesimal generator of the action is given by

& (M)->Z (M XF(M)),

XoX* 4 XF(M)—>T (4 XF(M)),
where

X*(gu)= Te‘p(g.u) X

— Lyg — X(u)eS,(M) o T, F(M) .

On # X F(M), we introduce the following weak L,-
Riemannian metric A. For (g, u)ed XF(M),
h,, h,€S,(M), and Z,, Z,€T,F(M), let

A(gu)((hy, Z,), (hy, Z)))
= U (hv h2>g dug) +§(u)'(zp Zz) ’
M

where (A, h,), denotes the pointwise metric on T*M
® sym I *Minduced by g, du, is the volume element associat-
ed with g (a measure, not an n form, unless M is orientable),
and § = 7%, g + (0 ®®) is the metric on F(M) intro-
duced in Sec. II.

For s>n/2, we let #° denote the Hilbert manifold of
H * Riemannian metrics, $ 2(M) the space of H * two-covar-
iant symmetric tensor fields, and 2°* ! the group of H*+!
diffeomorphisms of M (see Omori,” Ebin,® and Ebin and
Marsden® for more information about these spaces). Then
Z*+! is a topological group and acts continuously on .#*.
Let

Q*: (M XF(M))X D+ > XF(M),
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((&u), fy=>(f*g f*u)
denote the corresponding C° action on .#* X F(M).

The action @ has the following properties.
Theorem 3.1. Let

®: (M XF(M))X D—M XF(M),
(@), fI> (28 f*u)

be the action described above. Then ® is a smooth, free, and
proper action, and & acts as a group of isometries with re-
spect to the weak Riemannian metric A on .# X F(M).
Proof: As in Ebin,’ the C° action
O (M XFM)X D+ > M° XF(M)

induces an ILH-smooth action of & on .# XF(M). The
action is free, since if (f*g,f*u) = (gu), f*¢=g and
Sflu) = u, so fis an isometry fixing a frame and so must be
theidentity. To show the action is proper, we must show that
the map

(A xF(M)_)xge(/ XF(M))X (M4 XF(M)),

((g:u), f)—> ((&u), (f*g [*u))
is proper. Thus let (g,,u,)—(g %) and (f¥g,,
S*u,)—( g, u,) converge in (# X F(M))X (A X F(M)).
Then g, —g, and /¥ g, --g,, S0 by the properness of the ac-
tion of & on .# [seeremark (3) below], f, hasa convergent
subsequence f, in &. Thus the action of & on .# X F(M) is
proper.

To show that A is invariant by &, let fe4,
(gu)et XF(M), h,, h,cS,(M), and Z,, Z,eT, F(M).
Then

((F*)*A(gw)(hy, Z,), (B Z,))
=ACS* G Ay, TS *Z)), (f*hyy T f*Z5))

= ([ ot s o )
ST 0y Zy Tuf *Z,)
= ([ cthi deor s+
+ (ORI 2, T, f72Z,)
= ([ £ty dup) + 2002, 20

=( <h19 h2>gdug)+g(u)'(zli Z2)
=A( g,u)°((h1, Zl), (hz’ ZZ)) O

Remarks: (1) It is interesting that the action of & on
M X F(M) is free although it is not free on either of the
factors.

(2) Generally, if M, X G—M is a proper action, and
M, X G—M, is any other action, then the action on the pro-
duct space (M, XM,) X G—M ;X M, is proper.

(3) Ebin (Ref. 3, Proposition 6.13) shows that if g,,
8.64°, s>n/2, and f,€PD**! is a sequence such that
f* g,—8, then £, has a convergent subseqence in Z°+'.
Using the strong H * metric p° on Z°, it then follows that
the action of Z°*! on .#° is proper (see Palais'?). O

Since we are working with infinite-dimensional mani-
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folds, we cannot immediately conclude (as we can for finite-
dimensional manifolds) that the orbits are embedded sub-
manifolds, or that the quotient space (.# X F(M))/Z is a
manifold. To get the first of these results, we must show that
the orbit map is an immersion, and to get the second, we
must construct local equivariant cross sections for the action
(see Palais'?). For these results, we shall need a direct sum
decomposition of S,(M) & T, F(M).
First we recall some results of Ebin.> Let

ViU XD>M, (&F)>f*
denote the usual pull-back action of & on .#. For ge#, let
V,: DM, f>f*g
denote the orbit map at g. Then ¥, is a smooth map with
derivative at the identity e given by
a, =T, ¥,: Z(M)—>S,(M), X—Lxg,
where L, geS, (M) is the Lie derivative of g with respect to

the vector field X. Then range a, is closed in S, (M) and has
closed L,-orthogonal complement

$,(g) = {heS,(M)|5,h =0},

the space of C* divergence free two-covariant symmetric
tensor fields on M. In local coordinates, the divergence is
given by (8,k), = — g’*hy,, where the vertical bar de-
notes covariant differentiation. Thus S,(M) splits L,-or-
thogonally as

S,(M) =§’2( g)erange a,, h =h +Lyg.

The pieces hand L x& are uniquely determined, but the vec-

tor field X is determined only up to a Killing vector field. We

shall refer to this splitting as the canonical splitting of S, (M).
Let

Oy =" £ DICY, (D) C M

denote the orbit through g. Then &, is a smooth closed sub-
manifold of .# with tangent space at g given by

T,0, =range a, .

Orthogonal to &, there exists a slice S, C.#, also a smooth
closed manifold of .#, with tangent space at g given by

7,5, =S5,(g) .

Thus the canonical splitting can be written as

T, 4 =T,S,0T,0,.

We now construct a similar splitting for
§2(M) o T ,F(M). Recall that for ge# and weF(M),
I, (u) CF(M) is the orbit of I, (M) ,t\hrough u with tangent
space at u given by T, ([, (W)CF, (u)CT F(M). Let
&, (u) denote the orthogonal complement of .# , (1) with

respect to £(u), so that we have the g(u)-orthogonal split-
ting of T, F(M),

T,F(M) =7, (u)e 7" ()

(see Fig, 2).
Theorem 3.2: For (g,u) e.# XF(M), let

A gy = T.P(gu): Z(M)—>S,(M) e T, F(M),
XX *(gu) = Lyg — X(u)
be the derivative of the orbit map
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Cigr =5 XC. (8

Fiu A

rangea,,,

4 XF (M)

Do D—MXFM), fr—~(f*g f*u)

at the identity eeZ. Then a,,, has closed range and
$,(8) ea.}ﬂ (u) is a closed complement of range @, in
S,(M) e T , F(M). Thus there is a direct sum decomposition

S,(M) e T,F(M) =$,(g) @ 7 (u) orange a,.,
Ifh + Z,eS,(M) ® T, F(M), then
h+Z,=h+W.tag, X+7)

=h+ Wi+ (Lxsng— X +YwW))>

where h=h h + Lxg is the canonical splitting of A,
W,=2, +X(u), and W, = W1+W“e5.fl (u),is the
splitting of W, according to the §(«) -orthogonal splitting of
T,F(M), and Yef (M) is the unique Killing vector field
on M such that Y(u) = —wl.

Each of the above summands is equivalent with respect
to 9, ie, if feZ, then

50 f*0) =r*5:(2)),

I, o) =T, F (S} ),
and
range Q (F*%f*u

= T( gu) f"(range A gu) )
= {T( gu) f"(h + zu )
=f*h+T,f~"Z,|h+Z,erange a,,,,},
where the “L” on the left-hand side of the second equation is
the ( 7*2) (f*u)-orthogonal complement of ¥2 g (F*00).
Proof: a(,,, is injective, since if a( g (X)
=Lyg —X(u) =0, then L,g=0 and X(u) =0.
Thus X(x,) = 0, xo = Tpp(u), and T, X = 0. But it is clas-
sical that a Killing vector field on a connected manifold that
vanishes at a point and whose derivative vanishes at that
point must be identically zero. Note that if X(x,) =0,
T,,X = 0 is equivalent to VX (x,) = 0.
Since ker @, ., =0, it follows by an elementary argu-
ment that a necessary and sufficient condition for a, aw 1O
have closed range is that if X,e4° (M) is a sequence of vec-
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O g =-(gu) @

FIG. 2. The direct sum decomposition
T (A XF (M)
=85,(M)e T, F(M)
= 5'2(3) ® S;(u) e rangea,,,
with
T= T, Cor =528 T, (u).

tor fields such thata , ,,, (X, )—0, then there exists a subse-
quence X, —0. So assume Qg (X))
=Lyg— X (u)—0. Then a,(X,)=Ly,g—0 and
X, (u)—0. Since a, has closed range (Ebin,> Proposition
6.10), X, has a convergent subsequence X,, —X that con-
verges to an element Xe.#, (M). Thus X,,‘ (w)—>X(u) =0.
Thus from the above X = 0. Thus range a,,, is closed in
S,(M) e T,F(M), and a, ,, is an isomorphism onto its
range.

Now Sz( g) =ker§, is closed in S,(M), and since
Jf” (u) is finite dunensmnal $,(8) e.fl (u) is closed in
Sz(M) oT,F(M). Thus both range a,, and
.S’z( 8) @ T, F(M) are closed in S,(M) @ T,F(M). Since al-
gebraically complementary closed subspaces of a Fréchet
space are topologically complementary (Wilansky,'* p. 62),
it is sufficient to show that 5,( g) o7 & (u) is an algebraic
complement to range a4, .

Thus let h+4Z, el$,(2) e.f‘(u))nrange A g
Thus 6,4 =0, Z, efl(u), and there exists an XeZ” (M)
suchthath +Z, ._Lxg X(u). Thush = Lyg =0by the
L,-orthogonality of the canonical splitting, and so X is a
killing  vector field. Thus X (u)ef (u). But
X(u) -2, e.f‘ (#), so X(u)=0. Hence, as above,
X=0,andsoh + Z =0.

Now let h + Z,eS,(M) o T,F(M). Let h=h + Lyg
be the canonical splitting of 4, so X is determined only up toa
Killing vector field. Let W, =Z, +X(u)eT F(M), and
let W, =W + W‘e.ﬁr (u)ea.f1 (u) denote the splitting
of W, according to the sphttmg of T,F(M).

Let Ye &, (M) be the unique Killing vector field on M
such that Y(u) = — W . Such a Y exists by the definition
of f (u), and it is unique since a Killing vector field is
determined by its value and the values of its derivative at a
single point. Then

h+Z,=h+Lyg—Xu) +(Z, +X(u))
=h+ WL+ Wl 4L g—X(u)
= (h+ W) + Ly g —X(w) — ¥(u)
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=h+W.ta,, X+D,
where
gy X+ 1) =Ly, y, g —X(w) - F(w)
=Ly g—X(u) — ¥(u)

s1nce L,— g=0. Thus S,(M)e T, F(M) is a sum of
Sz( g) ea.fl (u) andrangea ., , and thus from the above is
a direct sum.

Now we consider the equivariance of each summand.

First, if heS,(f*g) = {heS,(M)|8;.,h =0}, then
(f™D*(Bpagh) =8,((f~)*h) =0 s0 (f“)"'heSz(g)
and  hef*S;(g)). Hence S,(f*g)C f*S:(g))
Since  this inclusion is true for all f
5,(8) =8((£TH*(f*))C (f~)*8,(f*¢), whichgives

the reverse inclusion f *(S2 (2)) CS2 f*g) and hence equa-
lity.

For the second summand recall from Lemma 2, 1 (with
S ! replacing f) that ff.g (f*u)=T,f " (./ (u)).
Thus for Z,, Z,€T;.,F(M),

(F*) (f*0)(Z,, Z,)
=2f(F W) - (T 24, Ty 22
=) - (Tye, FZy, Tpe, F2Zo).

Thus
Ty | Trey F(M)—T, F(M)

is an isometry of the inner product spaces
(T7e, F(M), f“g(f"‘u)) and (T, F(M), g(u)) and so maps
orthogonal subspaces to orthogonal subspaces.

The equivariance of the third summand follows from

T, gu) S[HS (M) o T, F(M))
=S,(M) e T, f~T, (FM))
and the equivariance of the first two summands, where
S M XF(M)—> M XF(M), (gu)—(f*g f*u)

is the diffeomorphism of # X F(M) corresponding to fe <.
Alternately, by direct computation, for f€ & and
Xe# (M),

A pog o ((f 1) X)

=L ;-yxSf*8— (f_l)‘X(f*u)

= f*(Lyg) ~ T, F "X (w)

(see the proof of Lemma 2.1)

=L g f*(Lxg-i’(u))

=T (g f*(a(g,u) (X))
Thus
a(f‘x,f‘u)((ful)t QQ(M)) = T( gu) f*(a(&u)( ?(M)))’
andsince ('), (M) = Z (M),

TANGe Q(yug pouy = T gu S*(range a g, ). =

Remarks: (1) Note that the summands are direct sum com-
plements but not L,-orthogonal complements with respect
to A. Indeed

ACgu) Ak +wh, Ly g — X(w)) = — g(u)(wh, X(w)),
which is not zero in general. Infact the L,-adjointof @ , ,,, is
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a?gu)' S;(Mye T FIM)—-F (M), h+2Z, |—>25 h,

so the L,-orthogonal complement of range a(,,, is
ker a?,., =5,( g) @ {0}. Thus the usual Fredholm alter-
native approach to splittings does not work in this case, so we
must construct closed linear complements directly.

(2) In the canonical splitting of # = h+L x &, X is de-
termined only up to a Killing vector field. In the splitting of
S,(M) © T,F(M), however, W. and the sum X + Y are
uniquely determined. Indeed, if X,e#,(M) and

Xoew =X +Xl replaces X, then (W )new
—Z +X(u)+X1(u) But smce Xl(u)e.f (u),
X4(u) =0, and so (W)t =2, +X(u))l = w. Simi-
larly, ew 18 NOW chosen so that

Voo () = — (W)l = — (Z, + X)) — X, (),
since i"] (u) =:1\’,(u). Thus Y., =Y—X, so that
Xoew + Yoew = (X + X;) + Y— X, =X + Y. In short, the
ambiguity in the choice of X in the canonical splitting of 4 is
reflected solely in an ambiguity in the choice of Y. The sum
X 4 Y, however, is uniquely determined. a

Using the above splitting, we can now show that the
orbits are closed submanifolds of # X F(M) (see Fig. 2).
Proposition 3.3: For ( g,u)e# X F(M), the orbit
ﬂ(g,u) = {(f‘grf*u)lfeg}
through ( g,u) is a closed submanifold of .# X F(M), with
tangent space at ( f*g, f*u) given by
T( feg. fou) ﬁ( gu) = range a(f.g,.,-.,,)

= (g,u)f"(range ag &) )!
and where

range a( gu)
={Ly g — X(u)eS,(M) + T,F(M)|XeZ (M)}.

The orbit map

DPony: DO 4uy CMXF(M)
is a diffeomorphism onto 7 ,,, .

Proof: For s> n/2, consider the action

S+ (MXFM))X D+ - M XF(M),

((&u), fy=>(f*8 [ *u).

By standard composition properties of Sobolev spaces, if
(gu)ed+* X F(M), k>0, the orbit map

DLl DV S M XF(M)
is of class C* (see Fischer and Marsden'*). Also ¥}, is
injective. For k> 1, its derivative at the identity is

aty =T.O%.: 2 (M)—>S5(8) e T,F(M),
X—Lyg— X’(“)

Since ker a¢},, = {0}, and since a{},, has a closed range
with a closed direct sum complement S HEX:) f (u),

@5}, is an injective immersion at the identity.
For feZ**1!,let

[ MEXFM)—>MXF(M), (gu)—(f*g f*u)

denote the diffeomorphism of #° X F(M) corresponding to
feZ5+!, and let

(gu
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R,: DG+, hshof
denote right translation by f. Then
T,R;: T, 9+ = &'+ \(M)—>T, 9"+,
so that
TR, (T, 2°+1) = T,@°*+'o f~' = 2+ (M),
Since ®**! is an action, we have the identity
P+ °Rf = f‘°¢:+l

X—Xo f,

(8u) (gu)

or

(I)-:;'}) = f*o(p;;.:) oR,.,
and so

Tt = T g [*oT. @50 °T R,

= T g f*oa 3, OT R,

Thus
range T, 77,

= qu)’(;ul) (Tf-@Hl)

= (g'u)f*oa-z;:)(2”+1(M))

=T gu S*(range a{},, ) = range aifop reu)»
so that

$5(f*0) 0T ke (f*u) =T, F*8x(8) @ FE(w))
is a closed linear complement of range T,®}}), in
S,(M) & Ty, F(M). Thus &}, is an injective immersion
and so the orbit is an immersed submanifold.

Moreover, since the action is proper, the orbit map
&} 1, isa proper map. Since a proper map between metriza-
ble spaces is closed, the orbit 7¢,,, = ®t), (Z**+!) is
closed in #* X F(M), and since &} }, is a continuous injec-
tion, ®¢} ) is a homeomorphism onto its image. By the im-
plicit function theorem, &%, ,, is then a closed C* submani-

fold of #* X F(M) and ®;} ), is a C* diffeomorphism onto
O ¢uy (see Abraham and Marsden,'' Example 1.6.F.a,
which is easily generalized to Hilbert manifolds). Moreover,
the tangent space of £, at (.f*g,f*u) is given by range
T, O Feg pouy = T gy S*(range T, {3 ), theequality fol-
lowing by Theorem 3.2 That # ,,, is an ILH submanifold
and that @, ,, is an ILH diffeomorphism onto &, is
now checked in a standard manner. O

We now construct local equivariant cross sections for
the action ®. For ge.#, we let S, C.# denote Ebin’s slice at
gfor the action of ¥ of Z on .« and for ( g,u)e& X F(M),
we let C,(g) CF(M) denote the local cross section at
ueF(M) for the action of I, (M) on F(M).

Theorem 3.4: Let

D: (M XF(M))X D—>M XF(M),

(C&u), fy>(fru, f*u)
be the action of pullback on .# XF(M).
( gu)e.d X F(M), there exists a submanifold
Cigun =8 XC,(8) M XF(M) (seeFig.2)

containing ( g,u) and which satisfies the following condi-
tions. :

(1) At (gu),

For
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T4y Cism =*§2( g) Q.}:(u),

so that C,,, is transversal to the orbit & ,,, through

(&u).
(2) C(,.., isequivariant with respect to 7, i.e., if fcZ,

Cirogrow =f*(Ciguw)-

(3) IfﬁD and f‘(C( gu) )r\C( gu) #g, then f = idM-
(4) The action ¥, restricted to C ,,, ,

@, : Cpuy X D—M XF(M),

(C&w u), f)— (f*81, [ *uy),
is a diffeomorphism onto an open invariant neighborhood
UC.H XF(M) of the orbit &, .
Proof: From Ebin’s Slice Theorem, S, is a submanifold
containing g. Thus S, XC,(g) is a submanifold of
M X F(M) containing ( g,u).

(1) Tg) S, XC())=T,S,®T,C,(8)
='§2( g) Q-;’:(u).

(2) In Ebin’s construction of the slice S;, he exponen-
tiates an open neighborhood of S, ( g) using the exponential
map of the & -invariant L,-Riemannian metric on .#'. It is
easily deduced from his construction [using the equivar-
iance of S, ( g) and of the exponential map] that the slice so
constructed is equivariant with respect to Z, i.e., for fe%,
Sreg =f*(S, ). Thisequivariance, together with theequivar-
iance of the local cross sections C,, ( g) [see remark 2 follow-
ing Proposition 2.2, taking /! instead of f] implies
Crog.rouy = Spog X Cpa (f*8) = f*(Sg) X fHC,(8))

= f.(sgxcu( g)) = f.(c(x,u) )'

(3) If for feZ?, (8&,u,)eS;XC, (g and
(f*81, f*u,)eS, XC, (g), then g, f*g€ES, and u,
S*ueC,(g). By property’ 2 of Ebin’s Slice Theorem,
f*S,nS, #O implies fel, (M). Thus fel, (M), and since
C, ( g) is a local cross section for the action of I, (M) on
F(M), u,, f*u,eC, ( g) with fel, (M) implies f=id,,.

(4) Since the action ® is smooth and proper, ® is
smooth and proper, and hence a closed map. By property
(3), ®isaninjection and hence is a homeomorphism onto its
image.

The derivative of @ at (( g,,%,), f)EC 4., X Z is given
by
T((g..u.),f)q):

T gy C gy X T D —8(M) & Ty, F(M),
(h +Z0 X T gy o0+ Z, + @ g0, (D),

where X = X0 f~'e#°(M). Since C(,,, is transversal to
& ( gu) » by the openness of transversality, if C , ,, is chosen
small enough, C, ,, will be transversal to all the orbits it
meets. The transversality of C ., together with the injecti-
vity of @4 ) = T.®(,,,) implies that T, ., P is an
isomorphism at every (( g;,4,), f)€C( 4y X Z . From this it
follows that @ is a diffeomorphism onto an open invariant
neighborhood of Z (., (see Ebin,® pp. 32-34). O

Remarks: (1) Again we remark that the usual proper-
ties of a slice restrict to properties (3) and (4) when the
action is free.

(2) Since
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T(g,u)S(g,u) =‘§2( g) 9'2-;(”)
and
T(g»“) ﬁ(

(Proposition 3.3), the splitting S,(M) = $,( g) e.}é(u)
@range a,,, can be written as

Tiquy MAXFM)) =T 0,Ciom ®T (0 (g

which gives a geometric interpretation of the first two sum-
mands as the tangent space to the local cross section C,,
at ( g,u) and the third summand as the tangent space to the
orbit 7, through ( g,u). O
The existence of equivariant local cross sections now
implies the following.
Theorem 3.5: For the action

®: (M XF(M))X DM XF(M),
((&u), f)—(f*g, f*u),

gu) — range a 8u)

let
G e = (M XF(M))/ D
denote the orbit space, and let
7 MXFM)>Z gy, (gu)—[(gu)]

~ denote the orbit projection map. Then & p,, has a smooth
manifold structure such that 7 is a submersion with

ker T py T =T guy O (guy = TANZE A,y
and
range T, ™ = T gu) ]’gFM
S,(M)e T ,F(M)
= range .,

Moreover, 7: M X F(M)— g, has the structure of a
principal fiber bundle with total space .# XF(M), base
space ¥ ry, and structure group <. This principal fiber
bundle has a natural connection given by the direct sum de-
composition

S Mo T, FIM)=H .., 0V 4>
where
Vv,

(gu)

~8,(8) 07 ().

=ker T nm=range @z, = T3, 7 (ow
is the vertical subspace at ( g,u#) and

He . =S5(8)eFi )
is the horizontal subspace at ( g,u).

Proof: The proof proceeds as in the finite-dimensional
case (see, e.g., Abraham and Marsden,'’ p. 262). The main
idea is to use the local equivariant cross sections C ., as
charts for the orbit space ¥ gy = (4 XF(M))/Z . Thus a
chart for 9 g, at [(gu)] is constructed as follows. For
(gu)ed XF(M), let

7Tr . C(g,u)ﬂgFM
denote the restriction of 7: # X F(M)—Y g, to the local
cross section C, ,,, at ( g,u). Then#, isa bijection onto its
image. Since C,,, is a submanifold, there exists a chart
(U, @) at (gu), UC .# X F(M), that has the submanifold
property, i.e.,

@: U—E XF,
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P(UNC,.) = (UIN(E X{0}) CE x{0}.
Let
77 m(UnC g,y )>UNC .,
denote the inverse of 7, restricted to UnC,,,. If
[( g uy)]em( UnC, e ) then
77'_1([( g&ru)l)= C(g.u)nﬁ(g;. u,)
= {{( 82 “2)}g UnC,

gu) "

Thus
gort i m(UnC,,, )—E x{0},

1(gnu) )—p( go0u,)

is a bijection onto its image. Now take (m(UnC,,,),
gomy ') as a chart for &z, at [( g,u)]. From the smooth-
ness of the action and the equivariance of the local cross
sections, a routine check then shows that the overlap maps
between any two charts of [ ( g,u)] are ILH smooth, and
thus & g, is a smooth ILH manifold.

Now let (U, @) be a chart at ( g,u)e.# X F(M) and let
(m(UnC,uy), @om™') be a chart at =(gu)
= [(gu)]e% 1. Shrink U if necessary so that =(U)
=7(UnC(,. ). In these charts

(gom Yomop ~1: @(U) CE X F~E x{0},

(e,.f)—(e, 0)

is a smooth submersion, which implies that
M XF(M)—Z gy is a smooth submersion. As any submer-
sion admits smooth local cross-sections, 7 is a & -PFB over
g FM - 9 A

That the assignment ( g,u)—~H ., =S5,(g) &7 ;(u)
defines a connection on the PFB 7: .4 X F(M)—Y g, fol-
lows from the equivariance of the splitting

SS(M)eT,FIM)=H,,oV,.,
(Theorem 3.2), since if fe2
H fog, fouy =8(*9) e}l‘g(f*u)
= T gy S*8:2(8) 0 T L (w)).

That H ., depends smoothly on ( g,u) follows by argu-
ments as in Ebin and Marsden,® Appendix A, and Fischer et
al.® O

We have now constructed a manifold ¥ f,, which is the
base spaceof a Z-PFB7: 4 X F(M)—Y gp. Inturn, & g,
covers the space ¥ = .# /% of Riemannian geometries by
the projection

m: (MXFM)/ D> M/D, [(gu)]—g]
so that we have the sequence of mappings

M XEMYAMXFMN D = G o /D =,

(gu)—~[(gu)]1—[gl.
This sequence is analogous to the sequence of maps

PXF(PXF)/G=E—>P/G=M

used in the construction of a fiber bundle
E=E(M,F,G,P)=(PXF)/G
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over M, with standard fiber F, and which is associated with a
G-PFB 7p: P—M. In this construction, the first map 7
P X F—E is also a G-PFB with total space P X F and base
space E, and the second map 7 : E—M is the fiber bundle
associated with P>M. The Z-PFB 7: 4 X F(M)—Y g3, is
analogous to this first map, and the covering 7,: & p,,— Y is
analogous to the second map, with & playing the role of G,
4 the role of P, and F(M) therole of F. Thus if #—. 4 /D
were a Z-PFB, then 7;: 9 s — & would be the associated
fiber bundle with standard fiber F(M).

Interestingly; even though .4 —.# /< is not in general
a PFB, so that the second map of the construction ;:
9 me— 9 is not a fiber bundle, the first step of the construc-
tion m: M XF(M)—Z gy, is a2 Z-PFB, completely analo-
gous to the G-PFB 7: P X F—E.

We will return to this analogy in Sec. VI (see also the
remark following Proposition 3.6 below).

Since 7;: Y p—F is not a fiber bundle, the fibers
7 ([ 8]) € ¥ £ are not diffeomorphic to each other. In-
deed, if we think of & as a singular manifold covered by the
manifold ¥ j,,, then the deviation of the fibers 77 '([ g])
from the standard fiber F(M) is a measure of the degree of
these singularities. We now compute these fibers.

Proposition 3.6: Let

/sz(M):ﬁmi?, (gu)—[(gu)l—[g]

be the sequence of mappings described above. Then for
[ g8ole¥, the fiber m[ '(] g,]) is a closed submanifold of
9 e and is given by
7 ([ 8]) =&, XF(M))
= (0, XF(M))/D =I, (M)/F(M),
where &, = {f*g,| feD}C M is the D-orbit of gc.k,
and where
frgyt Loy (M)N\F(M)—my '([g]), [u]l—[(gou)]
is a diffeomorphism. At [ ( go,#) lem ([ g,]), the tangent
space to the fiber 7 !([ g,]) is
3,(80) ® 7%, (u)
S,(8o)
Proof: ([ 8]) ={[(&u)1eF rx|[ 8] = [ 8o) and
ueF(M)}, so that (g, u,)€l(gu)ler ([ Diff[ g,]
= [ goliff g, = f*g, for some feZ. Thus
w5 ([ &)
= {[(f‘gO!u)]egFleeg and ueF(M)}
= m&,, XF(M)).
Alternatively, 7,om( g,,u) = [ g,], and so
(mom) = ([ go]) =7 ton ([ 8)] = O, XF(M) .

Thus 7 '([ g]) = M, XF(M)).
Since &, X F(M) is a closed Z -invariant submanifold
of # X F(M), its orbit space

(O XF(M/ D =m{0, X F(M)) =5 ([ &])

is a closed submanifold of ¥ ,,.

If fe2 and ueF(M), [(f*gou)] = [( 80, (1) *u)],
and so

T[(xo.u)l('”l_ l([go]))z z};o(u).
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77'2_1([801) = {[(go,u)]egleueF(M)}

= 7({ g} XF(M)).
For gse[ go], let
Tg,* F(M)—>gFM, u'—*‘ﬂ'(go,u)= [(go:u)])

so that =, is surjective onto the fiber m; '([ gl). If
1y, (41) = g, (u,), then [(gou;)] = [(8p4,)], and so
there exists an f€Z such that f*g, =g, and f*u, = u,, so
that Sfel, (M). Conversely, if fel, (M),
g, (f*u) = m, (u) so that 7, is invariant by the action of
I, (M) on F(M), and hence passes to the quotient manifold
I, (M)\F(M), where, by the previous statement, it is injec-
tive. Hence

Tt Ip, (M)NF(M)—m5 ([ 80)) S F pnas

[u]'_)[ ( gOau) ]’

is a bijection.

Now 77, : F(M)— gy, is asmooth map with derivative
at ucF (M) given by

T, 7 TFM) =T (g0u1F ru ~8,( 80) oS, (u),

Z—~Z:.
Similarly, #, is smooth with derivative at
[ulel, (M)\F(M) given by
T,y TF(M)/F, (1) =T )8, g) 0 F L (w),
yATSY A

Hence 7, is an injective immersion onto the closed subman-
ifold 77 '([g]), and is thus a diffeomorphism of
I, (M)\F(M) and 7 '([ &]). Also, the tangent space of
77 ([g]) at [(ug,)] is then given by range
T, 7, zféo(u). O

Remarks: The above proposition continues our previous

analogy with the construction of the associated fiber bundle
E = (P X F)/G and the sequence of maps
TE

P XF—>E—>M.

Thus if xeM and psem,; ' (x), then
7z '(x) ={[(p,f)]I€E |7, ( p) =x and feF}
=m(0,, XF)
= (8, XF)/G ={[(pof)]eE | fcF}

=’ﬂ'({Po}><F)

where &, = p,GCP is the G-orbit through p,. The fibers
7 ([ go]) of Proposition 3.6 are given by the same formu-
las.

Moreover, each p,eP induces a diffeomorphism of the
standard fiber F onto the fiber 7z '(x,)

Tt Fo115 (%0) CE, fom(pof) = [(puf)],
where x, = m, ( po). The map 7, of the proposition plays
the role of the map =, in the standard construction. How-
ever, since #—.4 /% is not a bona fide PFB, 7, is only
injective when we pass to the quotient manifold
I, (M)\F(M), and thus the fibers 7; '([ g,]) are not in
general diffeomorphic to the “standard fiber” F(M). O
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In summary, 7;: & pp— & is an infinite-dimensional
manifold that covers &, and whose “fiber” 7, ' ([ g]) at the
geometry [ g]le¥ is diffeomorphic to the finite-dimensional
manifold I, (M)\F(M). Thus ¥ p,, unfolds the singulari-
ties of &, and the degree of this unfolding at [ g] (or the
degree of the singularity of & at [ g]) is measured by the
deviation of the fiber 77 ([ g]) from the “standard fiber”
F(M). Thus as expected, I, (M) parametrizes the degree of
the singularity of & at [ g].

IV. THE FRAME BUNDLE AS A HOMOGENEOUS
MANIFOLD

In this section, we construct a principal fiber bundle
m D—-F(M)

with total space Z, structure group & , and base space
F(M) [if M is nonreversible, replace F(M) with F ;} (M),
where u, is a frame at x,]. We also consider an interesting
double coset manifold

Lo \D/ D}, =1, (M) oD, | feD}.

We shall use these results in Secs. V and VI.
For x,eM, let

2, (M) = {Xe# (M)|X(x,) =0 and TX(x,) =0}.

Then #°; is a closed subspace of £2°(M). A finite-dimen-
sional complement can be constructed as follows.

Let {Y,, Y, }C # (M), 1<i<n, 1<a<n?, be n*+n
vector fields on M such that {Y; (x,)}, 1<i<n, span T, M,
and such that for 1<a<n?, {Y, (x,) =0} and {TY, (x,)}
span 7,(TM). Note that

TY, (x0): T, M—Ty ., (TM) = To(TM),

so that it makes sense to require that the set {7'Y,, (x,)} span
T(TM).

Let % (M) denote the (n* + n)-dimensional subspace
of #°(M) spanned by {Y;, Y, }. Since % (M) is finite di-
mensional, it is closed in #°(M). Moreover, we have the
following.

Proposition 4. 1: The subspaces % (M) and & o (M) are
closed complementary subspaces of (M), and so & (M)
has the direct sum decomposition

ZM)=2Z, (Mo M), X=X"+7Y.

Proof: Since % (M) and #°;, (M) are closed in £° (M),
it is sufficient to show that the above direct sum is true in the
algebraic sense.

Since {¥; (x), TY, (x)} is a basis for T, M e T,(TM),
for each Xe#’ (M), there is a unique solution {1}, 4 &} to
the n? + n equations

/1in (x0) = X(xp),
A iTY,- (x0) + A°TY, (x4) = TX(x,).

Let Y=ALY, +A5Y,e#(M). Then X' =X
— YGQ’;O(M) and X=X'+4 Y. Thus & (M) = 2’,’,0(M)
+ % (M).

Conversely, since {Y;, Y=} is a basis for ¥ (M), if
XeZ, (M)n% (M), then X =A1,Y, + A§Y, for a unique
set of coefficients {4, 4 §}. But since Xe#”, (M), these
coefficients all vanish, and so X = 0. Thus the above sum is
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an algebraic direct sum, and hence a topological onealso. O
Remarks: (1) Let 27 (M)/%; (M) denote the quo-
tient space of £” (M) by the closed subspace £, (M). Then
Y (M2 (M)/ &, (M), YY+ &} (M)
is an isomorphism of % (M) and 2°(M)/ %}, (M).
(2) The space £, (M) is invariant by &/, ie., if
feD;, then S \&r (M) =2, (M). However,
fo(Z (M)) is not in general equal to % (M), although
fo (& (M) will be another closed complement of 27/, (M).
O
Theorem 4.2: Let x,eM. Then &, is a closed ILH Lie
subgroup of & with Lie algebra #°; (M). The quotient
space Z /7, has asmooth manifold structure such that the
projection
m D—>D/D;, f>pPD
is a submersion with
ker Tym= 2, (M)of
and
range T =T, (D/D )= 2 (M)/ 2} (M).

The submersion 7 has the structure of a principal fiber bun-
dle with total space &, base space &/, and structure
group Z;, .

Ifu,eF(M) isaframeat x, = 7, (u,) and M is reversi-
ble or nonorientable, then

b DID,—FM), D ~Fuy)
is a diffeomorphism. If M is nonreversible then 171,,0 is a dif-
feomorphism onto F ;" (M) CF(M).

If% (M) C £ (M) is a closed complement of 27, (M),
then a smooth connection on the bundle m: P >2 /9, is
given by the direct sum decomposition

T, =ZM)of =2, (M)ofe% (M)of

=V,eH,,
where V, = ker Tym = &, (M)o f is the vertical subspace
at f and H, = % (M)o f=~ & (M)/ &}, (M) is the hori-
zontal subspace at f.

Proof: For s>n/2 + 1 and u,cF(M), let

¥ D>F(M), fflug) _
denote the orbit map at u,. Then ¢;_is smooth with deriva-
tive at feZ° given by

T, T, D —Tw,, (FOM)), X, —X(Flup)),
where X = X0 f~'e 2’ (M). Since T}, is clearly surjec-
tive, ¢, is a smooth submersion and so by the implicit func-
tion theorem

() " (o) = B, = (D,

={/feP’|fx)) =xp and T, f=1_}
is a smooth closed submanifold of Z° with tangent space at
JEZ;, given by

ker T, = 2}, (M)’ f.

It is also a subgroup, and so it is a topological group whose

group operations have the same smoothness properties as
those of Z¢. Therefore

Arthur E. Fischer 729



L—
D, = n

s>n/2+1

is a closed ILH Lie subgroup of D with Lie algebra

(2%,

FM= n

s>n/2 +1

&5 (M)
Now Z;_acts on Z° on the right by composition
DXD,—D°, (f, h)—foh,

and this action is a free C° action. The orbit map ¢ :

ZD*—F(M) is invariant by this action, since if feZ° and
heZs,

B, (foh) = Poh(ug) = Joh(uo) = Fluo) = i, (1),
and so passes to the quotient space

V.. DI/D, —FM), oD —f(u,),
where it is an injective map. Since ¢, is a submersion, {b’,,o is
an open map, and hence a homeomorphism onto its image. If
M is reversible or nonorientable, this image is all of F(M). If
M is nonreversible, this image is F .} (M). In either case we
induce a smooth structure on Z°/Z;_by declaring 1},‘,0 to
be a diffeomorphism onto F(M) [or F; (M)]. With this
differential structure, 7*: Z*—%°/%;_ is a smooth sub-
mersion because ¥}, : &, —F(M) is. Since any submersion
admits smooth local sections, 7° becomes a PFB with struc-
ture group Z:, . The bundle structure is only C° because
9, acts only continuously on Z°. However, it does give a
smooth ILH bundle structure to m: Z—>2/% .

If % (M) C #° (M) is aclosed complement of £°;, (M),
then the direct sum decomposition

&M)=2, (M)e% (M)
can be right translated to 7,% = 2’ (M)° f by
T.R: T.9 = #M)—T,D, X—Xof.
Thus
T,9 =T,R-& (M) = TR, (M)  T,R-% (M),
or
Z(M)of=(Z, (M)of)e(¥ (M)of),
is a right equivariant direct sum decomposition of 7% by

closed complementary subspaces. In particular, if heZ,
then

T,R, (¥ (M)of) = ¥ (M)o foh,

so that the horizontal spaces H;=% (M)of
= T, R;-% (M) satisfy

TR,-H; = Hp,.
Moreover, from the smoothness of the group operations in
Z, and by using arguments as in Ebin and Marsden,® Ap-
pendix A, it follows that the distribution
SroH; =% (M)of is smooth in f, thereby defining a
smooth connection on the & -PEBm: I—2/2,. 0O

Remark: Thus choosing a direct sum complement
Y (M)C # (M) to &}, (M) is equivalent to giving a con-
nection on the PFB 7: 9 >2 /7, . O
et For g,c.#, the isometry group I, (M) acts on Z on the
CIL,

L (M)XD—D, (k.f)kof.
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Since I, (M) is compact and acts freely, the quotient space
L (M\D ={I, (M)°f|fcD}
is a manifold (see Ebin,’ p. 22). Also, I, (M) acts naturally
on the left on the quotient manifold, Z/Z;, ,
I. MYX(D/D;,)—>D/D;,,
(k,fb.@;o )n—>k°f°.@;° .
This action is free, for if kofod; = P, then
floko fe;, , and since (fT'0ko f)*(f*go) = f*go
(f1oko f)elpe, (M)ND ', .Hence f~'oko f = id, andso
k = id,,. Since I, (M) is compact, the resulting quotient
space

I (M)N(2/2;,)) =1{, (M)o( 2D}, )| fcP}
is a manifold, since /2 ;,_is a finite-dimensional manifold.

Similarly, & acts naturally on the right on the quo-
tient manifold I, (M)\ ¥,

(I, (M)\D VXD ; -1, ( M)\ZD,

(I, (M)o f, h) I, (M)o foh.
This action is also free, for if I, (M)o foh =1, (M)of,
then I, (M)o foho f~' =1 (M), and )
thOf_lEIgo (M). Thus he[(f—l)'go (M)ﬂ@;n = {idM}. A
slight modification of Theorem 4.2 then shows that the quo-
tient space

(L, (MIND)/ D}, = I, (M)°f)o D, |feD}
is a manifold. Clearly the quotient manifolds 7, (M) \ (Z2/
D)) and (I, (M)\Z)/D, are canonically identifiable
with each other, and we can remove the parentheses

I (M)N(Z/D;)=I, (M)\D /D,
=, (MI\ND)/D.,.

The double coset manifold I, (M)\Z /2 has two
interesting interpretations. For goe#, the & orbit of g, in
M, O, ={*8| €D}, is a closed submanifold of # and
is & invariant, and so & actson &, on the right,

O g, X .@;o—-»ﬁgo, (g.h)—h*g.

This action is free, and since &, is a closed invariant sub-
manifold of .#, the resulting quotient space

0.,/ D, CHMID,,

is a closed submanifold of # /% (see Theorem 5.2). Let
(g) =8P €0,/ denoteclements in the orbit space.

Proposition 4.3: Let gee#, u,eF(M), and
Xg = Ty (49)€M. First assume that M is reversible or non-
orientable. Then the diagram

I, MND/D.,
771,/ 72
O/ D}, ™ I, (M)/F(M)

where

M Iy, (M)Ofo D} —([*8) = [*80 D}, €0,/ D,
Ny I, (M)o fo D —[ flu)] =/I;°(u)elgo (M)\F(M),
N3t (f'go)""[}'(“o)]’
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is-a commuting diagram of diffeomorphisms.
If M is nonreversible, the above remains true if F(M) is
replaced by F 7 (M).

Proof: The proof follows by noting that the quotient
manifold I, (M)\Z is naturally diffeomorphic to the 2 -
orbit £, by the diffeomorphism

I (MIND—O,, I (M)ofisf*g,

Similarly, for uo€F (M), x, = g, (4,), the quotient mani-
fold 9/, is naturally diffeomorphic to F(M) [or
F (M) if M is nonreversible] by the map

Yu: D/D,—FM), foD s fluy).

Then the identifications I, (M)\Z =0, and Z/ZD],
~F(M) imply the chain of identifications

Oo /D =L, (MIND)/ D}, =1, (MI\ND /D,

=1, MON\(D/D;,) =1, (M)\F(M)
[orin the last step, I, (M)\F ;' (M) if M is nonreversible],
which we diagram as

(f*8) = f*e0 D I, (M)ofoT;,

I (M) f(u)) = [ )] O

V. ANOTHER RESOLUTION OF ¥

As mentioned in the Introduction, for x,eM, the group
D, acts freely on .# . In this section we show that the orbit
space # /%, isamanifold that resolves the singularities of
A /2 . This result follows easily from the methods used in
Sec. IT1, together with a modification of the canonical split-
ting of S, (M). We begin with this modified splitting.

Proposition 5.1: Let x,eM, and let

ZM) =2, (M) e % (M)
be the direct sum decomposition of £°(M) according to
Proposition 4.1. Let ge.#. Then % (M) can always be cho-
sen so that

I (M)CY (M).
If % (M) is so chosen, then we have the direct sum decompo-
sition

S,(M) =8(8) @ (% (M) @, (£, (M),

h =i1 +LYg+LX'g9
where each of the summands is a closed subspace of S, (M).

Proof. Since dim F, (M)<in(n + 1) <dim % (M)

= n? + n, and since a Killing vector field X is determined by

X(x,) and TX(x,), it follows that % (M) can be chosen so
that £, (M) C ¥ (M).

From the canonical splitting, S,(3) splits as

S, (M) =.§‘2(g) @ range a,,
where 5'2 (g) and a (& (M)) are closed subspaces of
S,(M). Thus it is sufficient to show the direct sum decompo-
sition

a (& (M))=a,(% (M)) ® a,(#], (M))
for the closed subspace range a, = a,(# (M)). Now
a,(% (M)) is finite dimensional, and hence closed in
a (£ (M)). Also, a,(£°; (M)) is closed in a,(Z (M)),
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since @, (2 (M))is closed in S, (M), and #°;,_ (M) is closed
in & (M). Thus if X,e2°;, (M) is a sequence of vector
fields such that Ly g — 0,

X, > XeZ (MINF}, (M) = ker a,n#;, (M) = {0},

and so X = 0. Thus a, (£, (M)) is closed in a,(2°(M)).
Thus we must only show that the above direct sum is an
algebraic direct sum.

Since (M) = &, (M) ® ¥ (M), clearly

a (2 (M) = a, (2, (M)) & (¥ (M)).

So let hea, (27, (M))na (¥ (M)). Then h=Lyg=Lyg
for some Xe#’, (M) and Ye% (M), and so Ly_ yg=0.
Thus X — Y7, (M)C% (M) [since we are assuming
F,(MCY (M)], and so XeY+ ¥ (M) =% (M).
Thus Xe#’, (M) n % (M) = {0}, and so X = 0. a
Remarks: (1) We shall refer to the above splitting of
S,(M) as the modified canonical splitting. Thus if heS,(M)
and h = h + Lg is its canonical splitting, and
X=X'+YeZ, (M) @ ¥ (M), I, (M)CY (M),

is the splitting of X, then # =k + Lyg + Ly,g is the modi-
fied canonical splitting of 4, where each of the pieces is
uniquely determined. Moreover, even though X is deter-
mined only up to a Killing vector field, X' is uniquely deter-
mined, for if X is replaced by X+ X, with
Xef, (M) C % (M), then (X + X,) =X'since X; =0.
Thus X + X splits as

X+X,=X"+(Y+ X)), X&), (M),

(Y+X,))e¥ (M),

where Y + X, is determined only up to a Killing vector field.
Of course, the piece Lyg = L(y. x,,& is uniquely deter-
mined.

(2) The summands in the modified canonical splitting
are not L,-orthogonal. Indeed, if Lygea, (% (M)) and
LX’geag(g;o (M))’

j (Lyg, LX'g>g dug

is not zero in general.

(3) When a, is restricted to £°; (M) it is injective and
hence is an isomorphism onto its image. Thus
a (2 (M))=2; (M). When a, is restricted to ¥ (M),
then ker @, =, (M)C % (M), and so

a (¥ (M)=% (M)/5 ,(M).
Thus
range @, = @, (£, (M)) & a,(% (M))
=& (M) & (¥ (M)/I ,(M)).
(4) If ueF(M) is a frame at x,, then & (M) can be
identified with 7, F(M) by the map
Y (M) —>T,F (M), Y7 (up),

and S, (M)C % (M) gets mapped to .}g (1,). Thus the
following spaces are isomorphic:

@ (¥ (M)=Y (M)/F (M) =T,F (M)/F , (45)

z.};(uo).
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In particular,

2, (¥ (M) > FLw), Lg— Tu)
is an isomorphism. a

For fixed x,eM, let

V: AXD —~ M, (&f)—~>S*
be the right action of & on .#. For ge.#/, let

Vo: Do, — M, fof*g
denote the orbit map through g, and let

O, =9,(D,)={f*elfeD. }C M
denote the orbit through g.

From the modified canonical splitting, together with the
methods of Sec. ITI, we now have all of the ingredients neces-
sary for the following theorem.

Theorem 5.2: The action of & on .# described above
is smooth, free, and proper. The L, metric on .# is invariant
under this action.

For ge#, the orbit & is a closed submanifold of .#
and the orbit map

V;: D, —>O,CH
is a difffomorphism. The tangent space to &, at
81 =r*gel is

T, 04 = (2, (M) =f*(a,(2;,(M))).

The orbit space .# /%, has the structure of a smooth
manifold such that the orbit projection map

m M MDD, g— (&)

is a smooth submersion. Moreover the projection 7 has the
structure of a principal fiber bundle with total space .#, base
space .# /9, , and structure group &, . For ge.#,

ker T,mr=T,0; =a, (& (M),
and
range T,m =T, (M /D ;) =S:(M)/a (2, (M)).

Proof: Since 9, is a closed ILH Lie subgroup of &,
smoothness and properness of the action follow from
smoothness and properness of the action of Z on .#. The
action is free, since if f*g = g, feZ, , then f=id,,. The in-
variance of the L, metric is inherited for the action of any
subgroup of & on .«

For s»>n/2, k>1, and ge.#°* *, the orbit map

'ﬁé: (gs+l);¢n — M fr>frg
is a C* map with derivative at fe(Z°*');_given by
Taly: T( D+, — Tpag M =S5(8), Xp—f*(Lyg),
whereX = X, o f~'e#’, (M)**'. Thus Ty} isaninjection

with closed range T ¢, =/f*(a (2, (M)**')).Now let
s+ (M)C &+ (M) be chosen so that _
I UM) ={Xe2*+ ' (M)|Lyg =0} C ¥+ (M).
Then S’ g) ®a (@’“(M)) is a closed complement of
a (2, (M)”‘) "and *850) o ag(@’“(M))) is a
closed complement of range T,4;. Thus ¢; is an injective

immersion and so (&} )* is an immersed C* submanifold.
Since the action is proper, (£ )" is a closed C* submanifold
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and ¢} is a C* diffeomorphism onto (&£} )*. The C* case
then follows.

Using the exponential map of the L, metric on .#°, a
local cross section C5 C.#° atge.#*+*, k>1, is construct-
?d by exponentiating a sufficiently small ball in
55(8) & a,(%°*(M))onto .#°. The resulting cross sec-
tion contains the Ebin slice .S 2 as well as small pieces of the
orbits corresponding to . (@”f 'M))=F (M)/F (M).

At f*g, fe(2°*h);,, A CHOEY: (@/’“(M)))

is a closed complement of range T,y
=[*(0y (2L (M) +")) = a,. (Z}, (M)**!), the last
equality following since f. (2%, (M)°*')= 2} (M)"*'.
Thus if we exponentiate f* (S5 (g) @ a (% l(M })) along
the orbit (£;)*, then by equivariance of the exponential
map, the local cross sections are equivariant,

Che =1*(Cy)
along the orbit. The remainder of the theorem then follows
from the existence of these equivariant local cross sections as
in Theorem 3.5. a

Remarks: (1) The modified canonical splitting of
S2(M) ’

S, (M) =8,(8) ® 2, (¥ (M) o o, (2, (M),
can be written as

T, M =Ty (M/D,) o T,(F)).

(2) The modified canonical splitting does not in and of
itself define a connection on the PFB7: .4 — .4/, . In-
deed, if g, =f*g,, f€Z; , and ¥ ,(M) and ¥,(M) are
closed complements of 2’ . (M) such that 7 (M)
C¥ M)andsS, (M)C ¥, (M) then

Sz(gz) & ag,(gz(M)Héf*(Sz(gl) ® ag (@/l(M)))

unless %,(M) = (f ~1). (% ,(M)). However, a connection
on 7 is defined by a smooth distribution g — %, (M) such
that for each g,

(1) %, (M) is a closed complement of £, (M),
(2) F,(M)CY (M),
(3) Frug (M) = (f~1)u (%, (M), for fcT, .
Note that if condition (2) holds at g, then, from (3),
'/f'g (M) = (f—l)‘(jg (M)) g (f_l)’(@g (M))
= @f‘g (M)!
so that (2) is then automatically true along theorbit ;. [
The manifold # /%, covers .4/ by the projection
m: MID, —~ M/D, (g)— (8],
i.e., 7, takes the & ;o-orbits of 4 to the & -orbits of 4. As
in Sec. ITI the “fiber” 7 '([g]) over [g] is a measure of the
degree of the singularity of # /% at [g].

Proposition 5.3: Let x,cM and consider the sequence of
projections

MM D MID, g (g) > (8]

Then for [g,le# /D, m; '([g,]) is an embedded subman-
ifold of 4/, and
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L 0, =859 =l (MN\D

O, =¢D;, = 4D )= D),

FIG. 3. The & -principal fiber
bundle over

O/ D =1, (MND/ T,

with fiber at (g)ed, /D! given
by O, =g.D,.

' ([g]) =(F,) =0, /D =I, (MI\ D /D,
where the last identification is given by the diffeomorphism
L (M)ofo D, — (f*8).

Proof: 7 (Igo]) = {(8)ek /D", |[g] = []}. Thus
if (g)em['([8]), and g€(g), then [g,] = [g,] and so
g1 =f*g, for some feZ. Hence

7 '(&]) ={(*8)et /D |fe D} =m(F,,).
Alternately, 7, © 7: g — [g], and so

(my o m) " ([go]) =7 M, ([80]) = Oy

Thus 77 '([g]) =7(&,). The  identification
O/ D =1, (MNP /D, has been shown in Proposi-
tion 4.3.

Since & acts freely on the closed submanifold &, , it
follows, as in Theorem 5.2, that &, /D, =w(F,) is a
closed submanifold of 4/, . O

Thus 4 /D, — # /D is an unfolding of the singular-
ities of 4/ 9.

As in Theorem 5.2, the projection

T OO0/ Ty 8> ()
is a & -PFB with total space &, , base space &, /
D, =I, ( M)\ D /D, and with fiber at (g)ed, /D,
given by 7~'((g)) = &} (see Fig. 3). Thus each Z'-orbit
&, is the total space of a PFB over I, (M)\ & /%, and
whose fibers are the &/ -orbits &; of &, . Thus, roughly
speaking, theorbit &, isal, (M)\ & /<, -thickening of
the orbit &, .

V1. REDUCTION OF THE BUNDLE .# X F(M) — & y

We have now constructed two principal fiber bundles,
which we diagram in Fig. 4, where u,cF(M) is a frame at
x,eM, and where the four projection maps have been de-
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O/ D =ty (MIND /D,

scribed previously, but are here relabeled. In Fig, 4,

ly: M — MXF(M), g— (gu),
and
d,: M/D, —(MXFMV/D, (g)r [(g up)].
Here d, is well defined, since if g,€(g), g, = h *g for some

heZ,, so [(g,uo)]=[(h*g uy)l =1[(g uy)] since
h*uy=u,.

The base spaces 4/} and (# XF(M))/Z in each
of the above principal fiber bundles are resolutions of the
singularities in .# /<. Here we complete our analysis by
showing that these base spaces are diffeomorphic [with the
possible replacing of F(M) by (F ;- (M))], and that the pair
(¢,» d.,) is a reduction of the <Z-PFB
i MXF(M) — & gy to the D, -PFB 73: M — T
Our definition of a reduced subbundle is slightly more gen-
eral than that of Kobayashi and Nomizu,'¢ p. 53, inasmuch
as we only require the base spaces to be diffeomorphic and
not identical.

We also construct a fiber bundle over M associated with

by
M —— ey M X F (M)

MID, —————» (HXFMYD =% ry

N, A

MG =9

FIG. 4. A commuting pentagon showing the relationships between the two
principal fiber bundles # —.# /D, , M X F(M)—Z ry,, and the space of
Riemannian geometries &.
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the frame bundle, with standard fiber & ;,,, and whose fiber
atx is &, . This bundle will represent the grand resolution of
the singularities of & .

Theorem 6.1: Let xoeM, and let 7y: A4 — 4/D}, and
m: MXF(M) — (M XF(M))/Z be the two principal fi-
ber bundles described previously. For a frame u,eF (M) over
Xos Trm (uo) = Xo» let

i M — MXF(M), g— (gu,).
Then with respect to the inclusion mapping i: 7, — %, i,
is an embedding of the Z -PFB 7, into the Z-PFB m, so
that 7, is a subbundle of 7,. The induced map on the base
spaces is

dy: M/D, —(MXFM)/D, (g)—[(8uyl,

so that the upper square of Fig. 4 commutes. Moreover, d,,_

is a diffeomorphism onto its image which is either -

(# XF(M))/Z if M is reversible or nonorientable, or
M XF } (M))/ 2 if M is nonreversible. Thus in the former
case the pair (i, ,d, ) is a reduction of the structure group
9 of m, to the structure group &, of 7, and the subbundle
7r, is a reduced subbundle of ,. In the latter case, 7, is a
reduced subbundle of

w5t MXF (M) — (M XF;(M)/D.
The lower triangle of Fig. 4 commutes.

Proof: Let heZ;, , and let u, be a frame at x,. Then
h *u, = u, so that

i, (h*gu) =h*(gu)=h*i, (8)
Thus with respect to the inclusioni: 7, — &, i, isaPFB
homomorphism. It is clearly an embedding, so that 7, is a
subbundle of 7. Let d, denote the induced mapping of the
base spaces, defined so the square in Fig. 4 commutes. Thus
du, (77'3(3)) = duo ((8)) = ”l(iuo (g)) = [ (8:1‘0) ]’ as 8iven
previously. Since/,_ is an embedding, the induced mapd,, is
also an embedding. Thus we must show thatd,, is a submer-

sion.
The derivative of d,: 4 /D — (M XF(M))/ZD at
(g) is easily computed to be

Tobu: T,(M/DL)=S,(M)/a,(#,,)

=T (gue) | (A XF(M))/ D)
=(S:(M) o T, F(M))/ay,.,(Z (M)),
h+a (2, (M))—~h+ay,,(& (M)

Now T, d,, is well defined, since d,, is well defined, or
since @, (2} (M))Ca g, (£ (M)), and T, d, is injec-
tive, since d, is an embedding. Alternately, if

hy + & guy (£ (M) = hy + @ g0, (2 (M),

then h, —hea,,,(Z(M)), and so h,—h,=Lyg

—X(u,) for some Xe# (M). Thus h, —hy=1Lxg
and X(u,) =0, and so h,—hea, (2, (M)),
orhy =hy + a (2°, (M)).

To show that T,,d, is surjective, let A+ Z,
+ gy (Z DT (g1 (4 XFMY D,  and  let
Ye#’ (M) be such that Y(u,) = Z, . Then

T(g)duo (h+Lyg+ ag(y;‘, M)
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=h+Lyg+ ay,, (% (M))

=h+2Z, +(—Z, +Lyg) +a,,,(Z (M)
=h+Z, +agu, (V) +ag,, (£ (M)
=h+2Z, +ay,,(# (M),

since @, (¥Y) =Lyg— ?(uo) =Lyg—2,. Thus
T4 d,, is an isomorphism. The same arguments then show
that

di: M/(D°F"), - (MXFM))/ D!

is an embedding and a submersion, and hence an isomor-
phism onto its image. That d, is then an ILH diffeomor-
phism onto its image then follows in the usual manner.

If M is reversible or nonorientable, & acts transitively
on F(M). Hence if [ (g,u,)]e(# XFIM))/Z and fc2 is
such that u, = f*u,, then

L, (f*8) = [(f*que) 1 = [(F*g f*u) ] = [(gu)],

sothatd, ((f*g)) = [(g,u,)]. Henced,_ issurjective. If Mis
nonreversible, a similar argument shows that d, is onto

(HXF}(M)/D.
Now m,0d, ((8))=m([(gu)]) = [g] =m3(g) so
the bottom triangle commutes. O

Remark: The inverse of d,, is given by
di Ipy— 9., (gl (f*7),

where fis a solution to the equation u =f u,) [assuming M
is reversible or nonorientable; otherwise replace & r,, with
57 = (M XF ]} (M))/ZD]. Thus

Fium
d.,o'(f‘g) = [(f‘ ’uo)] = [‘g’(f_l)*uo)]
= [(g, Fluo))] = [(gu)]. m

There is an interesting way to interpret the pentagon
diagram associated with this theorem which shows the rea-
sonability of the diffeomorphism d, : ¥, — & g This
interpretation continues our interpretation of ¥y, — & as
being the pseudofiber bundle associated with the pseudo-Z -
PFB .4 — # /% (see the discussion preceding Proposi-
tion 3.6). ’

For a G-PFB 7p: P— M, let H be a closed subgroup of
G, and let

E=EM,G/H,G,P)=(P X(G/H))/G

denote the associated fiber bundle over M with the homogen-
eous fiber G /H, and with projection map

wmg: E—M, (P,aH)-G— 7p(p).
Then E can be canonically identified with P /H, namely,
ig: P/H— (P X (G/H))/G,
(p) =pH — (p.H)-G = [(p.H)].
Moreover, from the inclusion
i: P—>PX(G/H), pw> (p,H),

we get the following pentagon diagram associated with the
construction of the associated bundle E:
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P P X (G/H)
P/H F (P X(G/H))/G =E,
H
”A /‘ﬂ'E

M=P/G

where P — P /Hisan H-PFB, P X (G /H) — EisaG-PFB,
p,ug: P/H—P/G, pH—~pG and 7wg: E—M,
(p, aH)-G — pG are fiber bundles over M, iy, is a diffeomor-
phism, and (J, i ) is a reduction of the G-PFB to the H-PFB.

Now if x,cM, &, isa closed ILH Lie subgroup of Z.
Thus if we pretend that .4 — .# /2 is a & -PFB, then the
associated fiber bundle

E(MID, DD}, D, M) =\MX(DID))ND

with standard fiber Z/2_ is canonically diffeomorphic to
M/ D} by the map

MID, > (MX(D/D )N D,
If u,eF (M) is a frame at x,, then
Y D/D,, ~FM), foD, (M) Fluy)

is a diffeomorphism [if M is nonreversible, replace F(M)
with F . (M)]. If we identify 9/ with F(M) [or
F . (M)], then

d: M/D, — (MX(D/D, WD

={M XF(M))/ D
[or (# XF ;5 (M))/D]

is the diffeomorphism from &, =.#4/Z to the total
space G gy, = (M XF(M))/ D of the fiber bundle with stan-
dard fiber F(M) associated with .# — .#/%. Thusd, is
analogoustothediffeomorphismi,: P/H — (P X (G /H))/
H, even though 4 — # /% is not a bona fide fiber bundle.
Moreover, the pentagon diagram of Theorem 6.1 is then
analogous to the general pentagon diagram for the construc-
tion of the associated fiber bundle E(M, G/H, G, P). Of
course the projections &, — ¥ and Y, — & are not
fiber bundles since ¥, — ¥ is not a principal fiber bun-
dle.

We now make three other remarks regarding Theorem
6.1. First, recall that the structure group G of a PFB
P(M, G) isreducible to a closed subgroup H if and only if the
associated fiber bundle £ = E(M, G /H, G,P) admits a cross
section o M — P/H = E (see, e.g., Kobayashi-Nomizu, ¢
p. 57). Thus since the structure group & of the PFB
1w M KXF(M) — G g, is reducible to the closed subgroup
D (assuming M is reversible or nonorientable), the asso-
ciated fiber bundle

\MAXFM)X(D/DL) M XF(M)
' 2 A
M XF(M)
 E XM
2

@) —[.Z2)]

5

735 J. Math. Phys., Vol. 27, No. 3, March 1986

must admit a cross section
MXF(M) M XF(M)
g e .
9 g,
Here the identification of ((# XF(M))X(L/D ;)P
with (& XF(M))/Z}, is the canonical identification of
(P X G /H)/GwithP /H discussedabove,where P — Mnow
corresponds to the bona fide PFB 7,: M4 XF(M) — % gy,
and not the pseudo-PFB .# — ¥, since 7, is the PFB whose
structure group & is reduced to & .
For a frame u,cF (M) at x,, an explicit cross section is
given by
MXFM)  MXFM)
(Tuo: — .
L7 D,
(@)1= ((F ) *guo)} D,
where feZ satisfies f*u, = u [or}"(u) = u,], and where we
denote elements of (# XF(M))/Z; by (gu)Z;,. To
show o, is well defined, we must show that it is independent
of the choice of f% that satisfies f*u, = u, and that it is
independent of the choice of representative of [ (g,u) ]. Thus,
first, if f,, /,€Z are such that f*u, = u and f*u, = u, then
F3 D% Tug= (fi°ofs N*uy=1u, and so fof; '€, .
Thus
0., ([@u)]) = (U7 V*gud¢Z;,
=((fz DYDY 7 DY tu)l Dy,
=((f7 ) *guo)} 25,
and so o, is independent of the choice of solution f*u, = u.

Second, if [(gu,)]=[(g,u)], then (gu,)
= (g, ftu,) for some fieZ. Thus if f*u; = u, then

St *uo= (fo f)*uy=ftu,and so
o, ( [ffglfful] )

= (((f°fi)_l)*ffgl’”o)'9;o

= ((f_l)‘gls“o)'-@;., = Uuo([ (&1u1)]),
since f*u, = u,. Thus o, is well defined and if f*u, = u,
then
17'5 (auo( [ (g,u ] ))

=ms(((F~)*8uo)} D 1) = [((f ™) *g,u0)]

=[(&,/*uo)] = [(gu)],
so that g, is a cross section.

As our second remark, we consider the question of
whether or not the natural connection on the Z-PFB 7,:
MXF(M) — % gy, is reducible to a connection on the re-
duced & -PFB 7y: 4 — &, . Since the Lie algebra
& (M) of & admits a direct sum decomposition
& M)=2, (M) ® ¥ (M), where &, (M) is the Lie
algebra of &, , the natural connection on 7, is reducible to a
connection on 7, if

Ad(D )Y (M) =F (M)

(Kobayashi and Nomizu,'® p. 83). But if k€2 and
Ye% (M) with flow f;, then

3

d _
Ad(h).Y = (hofioh™ N0
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=ThoYoh l=h*Y.

Since 4 *Y is not in % (M) for all k7|,

Ad(@;o)-@ (M)#% (M).
Thus the £°; (M)-component of the connection one-form
of the natural connection on 7,: # XF(M) — % 5, when
pulled back to 7,: .# — &, _ is not a connection one-form
on 7. This is another way of seeing that there is apparently
no natural connection on 7,: # — &, [see also remark
(2) following Proposition 5.2].

As a last remark regarding Theorem 6.1, we note that
for [go]e¥, the fibers

75 '([g]) =m (L)
={(f*g0)e¥ . | fcD}CY,,
and
74 ' ([8o]) = mF o, XF(M))
={[(*8ot) 1€ e |fe D, ucF(M)}
= {[(8ost4) 1€ pps |[uEF(M)}YC % prr

are embedded submanifolds. Since the bottom triangle in
Fig. 4 commutes, the diffeomorphismd, : ¥, — & gy re-
stricts to these submanifolds to give a diffeomorphism (if M
is reversible or nonorientable)

diguy =i, | 75 Y([8)):
w35 (([go])) — 74 '([goD),
(f*20) — [(f*gotio) ] = [ (80 (f ~1)*up) 1.
From Proposition 3.6, there is also a diffeomorphism
gt Lo (M) \ F(M) —m,” '([go]) [u]— [(gow)].
Thus another layer can be added to the commuting triangle

of Proposition 4.3.

Proposition 6.2: Let g€« and let ueF(M) be aframe at
x,. Assume M is reversible or nonorientable [otherwise re-
place F(M) with F} (M)]. Then the following rhombic
diagram is a commuting diagram of diffeomorphisms:

I, (M)\ 2 /9.,
7 Y

0/ D, =i ([8o]) —B—e1, (M) \ F(M),

d (\ /

7 ' ([8]) = (0, XF(M)V/ D

where 7,, 17, 775 are given in Proposition 4.3, 7, is given in
Proposition 3.6, and d, .. ,: (f*8o) — [(f*go 1) ]

Proof: That the upper triangle is a commuting triangle
of diffeomorphisms is Proposition 4.3. The lower triangle
commutes since

g, (13 (F *0)) = 7, ([F(26) 1) = [(g0» f(1i0))]
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= [(g8o F ™) *u)] = [(F*8urtto) ]

= dgou*(F*80)-
Since 7; and #,, are diffeomorphisms, soisd g .., - ]
Finally, we construct a fiber bundle 7z: E — M asso-
ciated with the frame bundle 7g,,: F(M) — M, with stan-
dard fiber ¥ p,,, and whose fiber at each xeM, 75 '(x) is
naturally diffeomorphic with &, [assuming M is reversible
or nonorientable; otherwise replace ¥, with
917.: an = XF .t (M))/ D, where u, is a frame at x,].
Consider the right action of GL(7) on .# X F(M),
(M XF (M))XGL(n) — 4 XF (M),
((gu), 4)— (gu)A = (gu-A).
Sincefo R, = R, o f forall &€GL(n) and fe 7, this action
commutes with the action of & on .4 X F (M),
(f*g.f*u)A = (f*g f*u-A)
= (f“g,f“(u-A)) ='f:.l (gu-A),
and so passes to a right GL(#)-action on the quotient mani-
gFMXGL(n) i gFM! ( [(g’u) ]9 A)

—[(gu)]A=[(@gu)Ad]=[(guAd)].
Let

E=E(M, gFM’ GL(n), F(M)) v
— (F(M) X 9 pyg)/GL(n)

denote the resulting fiber bundle associated with the frame
bundle 7,,: F(M) — M and with standard fiber ¥ j,,, and
let

mg: E—M, (4,[(84,)])}GL(n) — mgy (#)

denote the projection map, where we denote elements of E by
(u,[(g,4,)1)-GL(n)
= {(u-4, [(gu-4)))|A€GL(n)}€E.
Then for x,eM,
g ' (%0) = {(uor [(gu) 1)GL(n)|

[(g.4)1€F ppr and 7pp (wp) = Xo}

(see Fig. 5).

Now let

m: FIM)X G ppy — E = (F(M) X 9 £, )/GL(1)
denote the natural orbit projection map, so as previously
discussed (see discussion preceding Proposition 3.6), 7 is a
GL(n)-PFB over E. Moreover , if u,eF (M) is a frame at
Xo = Tpas (Ug), there is a diffeomorphism
Tt e — 75 (%) CE,

[(gu)] > ml(ug, [(g,%)]) = (uo, [(g,%)])-GL(n)

of the standard fiber & g, onto 7 !(x,). Remarkably, the
fibers 7 ! (x) can be naturally identified with the ¥ ’s.

Proposition 6.3: Let x,eM and let uycF (M) be a frame at
X,. Then the map

. -1
Ty Oy Gy, — 75 (%),

(&) —> (uo, [(g,45)])-GL(n)
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<

Geu=(MXFMVD

is a diffeomorphism independent of the choice of frame u, at
Xq, where

du,,: gxo - gpM’ @) — [(guy)]

is the diffeomorphism of Theorem 6.1.
Proof: For AcGL(n),

7,,-A([(&u)]) = (ug4, [(gu)])}-GL(n)
= (uo, [(g:4)]-4 ~')GL(n)
=, ([(gu)]4 ™)
=, o Ry ([(gw)]),
where

EA: gpu—*gFM’ [(gu)]— [(gu)]A=[(guAd)]

denotes the diffeomorphism of ¥ p,, induced by 4 and the
action of GL(n) on ¥ gy,. Thus 7, 4 =, ©R,-:. Simi-
larly, the diffeomorphism d, : (g) — [(8,4,)] satisfies

d...(8)=[(guyd)] = [(gu,)]-4

=R, ([guo]) = EA (d,,((®)),
so thatd, , = R 4 ©d, . Thus the composition
Ty, © d,,o: 9,‘0 — gm —»ﬂEl(xo),
@) — [(gup) 1 — (uo, [g:40])-GL(n)
satisfies
Toypn ©dys = (7, °R,-) 0 (R, 0d, ) =m, °d,
and so is independent of the frame ¥, at x,. O

Thus we have proven the following (see Fig. 5).
Theorem 6.4: Let

E=E(M, % gy, GL(n), F(M))
= (F(M) X & £y )/GL(n)

be the fiber bundle over M with the standard fiber & ,,, and
which is associated with the frame bundle F(M). Let-

mg: E—M, (u,[(gu,)])}GL(n) > mry (%)

737 J. Math. Phys., Vol. 27, No. 3, March 1986

ge=m5'(x)=H/D.

FIG. 5. The grand resolution
E=EM, 9 5y, GL(n), F (M)) of
% . The fiber bundle E has standard
fiber the canonical resolution space
9 pas» and has fiber at xeM the parti-
cular resolution space &,. Here E
incorporates all the particular reso-
lutions in its total space, parame-
trized by xeM.

denote the projection map for E. Then if xeM, the fiber
7z ' (x) = {(u,[g4,])-GL(n)|
[(guy) ]egpu and gy (u) = x}
is naturally diffeomorphic with ¥, = .4 /%, by the map
7, °d,: (&) — (u,[(gu)}])}-GL(n),

which is independent of the choice of frame u at x.
If u, is a frame at x;, then u, induces a diffeomorphism

—1
Tyt G ea — T (x0),

[(&u)] > (up, [(gu)])*GL(n),
and a diffeomorphism
d:l: gFM_-)g"o’

u

[(gu)]— (f*u),

where fc satisfies f(u) = u,. O

The above construction provides a ‘“‘grand” bundle
viewpoint of Theorem 6.1 in the following sense. The canoni-
cal resolution of ¥ is 9 1,y — ¥, and for each xeM, there is
a particular resolution ¥, — &. Moreover, a frame u at x
induces a diffeomorphism d [ ': 9, — &, that gives a
representation of the canonical resolution ¥ g, onto a parti-
cular resolution ¥, . If each fiber 75!(x) in the bundle
E — M is identified with the particular resolution &, then
the total space E contains all the particular resolutions ¥ ,,

E=U 9,
xeM

Thus in this picture, the base space M parametrizes the parti-
cular resolutions, and if a frame u at x is given, the diffeo-
morphism

d ; 1: g ;M 9 x
is the usual identification of the standard fiber with the fiber
at x that is induced in an associated fiber bundle when a point
ueF (M) in the principal fiber bundle is chosen. This is the
bundle viewpoint of Theorem 6.1.

Moreover, inasmuch as the bundle £ — M contains the
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totality of all the particular resolutions &, as its fibers, and
each frame ueF(M) gives a representation of the canonical
resolution ¥ g, or standard fiber of E, onto the particular
resolution ¥,, x =7 (u), or fiber of E at x,
E = (F(M) X 9 p3)/GL(n) may properly be deemed to be
the grand resolution of 9 .

VIi. FURTHER WORK

The techniques used in this paper can be applied to de-
singularize the moduli space of connections on a principal
fiber bundle. In outline, this program would proceed as fol-
lows. Let P = P(M, G) denote a principal fiber bundle over
a compact connected manifold M with structure Lie group
G. Let ¥ (P) denote the space of all connections on P, and let
Aut(P) denote the group of automorphisms of P that cover
theidentity of M. Then Aut(P) acts on € (P) on theright by
pullback,

C(P) X Aut(P)—C(P);
The resulting orbit space
C(P)/Aut(P)

is the space of moduli of connections on P. Because of the
presence of nonisomorphic isotropy groups at different con-
nections, this action is not free, and thus the resulting orbit
space in general is not a manifold. Here the isotropy group at
a connection is just the symmetry group of that connection.
Note that this situation is entirely analogous to the nonmani-
fold nature of the space of Riemannian geometries
(Fischer*). Another remark is that the action of Aut(P) in
general is not even effective, inasmuch as the center of G can
be identified with a subgroup of Aut(P) that fixes every con-
nection. This subgroup, however, is normal in Aut(P) and
can be factored out to produce an effective action.

Our idea to produce a free action is completely analo-
gous to extending .# to .# X F(M) in order to get a free
action of Z. Thus we extend ¥ (P) to ¥ (P) XP. Then
Aut(P) acts on the right on this product.

(% (P) X P)X Aut(P)—% (P) X P,

((@,p), F}>(F*», F~'(p)).
This action is free, since if FeAut(P) satisfies F *w = w and
F(p) = p for some peP, then F=idp. A further argument
shows that Aut(P) acts smoothly and properly. It then fol-
lows that the orbit space (¢ (P) X P)/Aut(P) is a smooth
infinite-dimensional manifold, and that the natural projec-
tion

m: (€ (P)XP)Y>{€ (P)XP)/Aut(P)

has the structure of a principal fiber bundle with structure
group Aut(P). The base space (¢ (P) X P)/Aut(P) in turn
covers % (P)/Aut(P) by the further projection
[(@,p)]—=[w].

In this sense, (% (P) X P)/Aut(P) is a desingularization of
% (P)/Aut(P). Note that Aut(P) acts naturally on Pon the
left, so that if € (P)—% (P)/Aut(P) were a principal fiber
bundle over the manifold <% (P)/Aut(P), then
(€ (P) X P)/Aut(P) would be the associated fiber bundle
over the base manifold ¥ (P)/Aut(P) with standard fiber P.
This situation is exactly analogous to the desingularization

(0, F)>F*w .
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of the space of Riemannian geometries (compare Sec. I).

A similar desingularization can be accomplished by
considering the subgroup Aut, (P) of Aut(P) that fixes an
arbitrary point p of P, and then taking the orbit space of
% (P) by this subgroup. The resulting orbit space

¢ (P)/Aut, (P)

is then a manifold, since the action of this restricted group is
free, smooth, and proper. Moreover, this desingularization
is isomorphic to the one above. Also, these particular desin-
gularizations can be tied together by an infinite-dimensional
fiber bundle associated with P(M, G), analogous to
Theorem 6.4, where the canonical desingularization
(€ (P) X P)/Aut(P) acts as a model for all the particular
desingularizations ¢ (P)/Aut, (P). The details of these
considerations will be published elsewhere.

Finally, we remark that an announcement of the results
contained in this paper is contained in Ref. 17. In that work,
and occasionally in the current work, because of the geomet-
ric suggestiveness of the term unfolding as a smooth cover-
ing manifold of a singular manifold, we use it interchange-
ably with the term desingularization.
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Effective determinism in a classical field theory with spacelike
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For certain classical field theories, it appears as if spacelike characteristic hypersurfaces can occur
in the solutions. In principle, this means that acausal propagation is allowed, and the Cauchy
problem breaks down. To investigate if indeed this happens, a class of Kasner-like solutions of a
generalized Einstein—-Maxwell theory is examined. It is found that the spacelike characteristics
almost never form, and when they do, they cause no trouble.

I. INTRODUCTION

One of the most useful ways in which to study a given
classical field theory® is by formulating it as a Cauchy, or
initial value, problem. In such a formulation, initial data
(possibly satisfying constraint equations) prescribed on a
spacelike hypersurface in space-time is evolved (via evolu-
tion equations) into a space-time solution of the field equa-
tions. This is often a very practical way to obtain physically
interesting solutions;” and the form of the Cauchy problem
for a particular theory (number and type of constraints,
number of evolution equations, number of free variables)
often reveals much about the nature of that theory.’

How does one tell if a given classical field theory admits
a well-posed Cauchy problem? While unfortunately there is
no canonical “yes—no” test that settles the question for every
theory, there are two criteria (one positive and one negative)
that have proven to be very valuable. The first criterion, the
positive one, is to attempt to show that the field equations are
hyperbolic (perhaps in a slightly modified sense if the field
theory involves gauge freedom).* This method has been used
to show that most of the important established theories in
physics——e.g., the Maxwell, the Einstein, the Yang—Mills—
Higgs (any group), the Dirac, and (in a certain sense) the
supergravity” theories—do admit Cauchy formulations. But
it does not work® for some of the theories appearing recently
in the physics literature—e.g., some of the R + R ? theories
of gravity,” certain versions of the skyrmion theory,® and
possibly some string theories.*!°

The other critierion, the negative one, concerns the exis-
tence of spacelike characteristic hypersurfaces. For a given
field theory, a characteristic hypersurface is a three-dimen-
sional submanifold embedded in space-time across which
discontinuities in the second derivatives of the solutions can
(in principle) develop. The existence of spacelike character-
istics prohibits a Cauchy formulation in the usual sense be-
cause initial data specified on such a hypersurface do not
generally determine all the necessary second derivatives of
the fields on the hypersurface, and hence evolution cannot be
carried out.

® Portions of this research were done while working at the University of
Waterloo, Waterloo, Ontario N2L-3G1, Canada.
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Spacelike characteristic hypersurfaces can cause other
problems as well. Characteristics, being the loci of second-
derivative discontinuities, govern the propagation of wave
fronts and shocks (the direction of propagation must be tan-
gent to the characteristic hypersurface). Thus if a particular
field theory permits spacelike characteristic hypersurfaces,
there is (in principle) nothing to stop the acausal propaga-
tion of signals.

In view of these consequences, classical field theories
that allow spacelike characteristics seem to be very unap-
pealing. We might feel justified in throwing out theories that,
like some of the R + R ? theories and like the generalized
Einstein~Maxwell (GEM) theory developed by one of us,!
have this feature. Yet, it is important that we recall that a
characteristic hypersurface is one across which second-deri-
vative discontinuities can occur in principle. Nothing says
that there necessarily are solutions that have such discontin-
uities.

To illustrate this point in a much simplified context, let
us consider a particle mechanics problem with the equation
of motion

M(q,9) 4(t)=F(q,9), (1.1)
where M and F are a pair of real-valued functions. Here,
there are no characteristic hypersurfaces in the usual sense;
however, the zeros of M can play a similar role, as we shall
see. Now if M is bounded away from zero, then Eq. (1.1)
together with a set of initial data {g(0), ¢(0)} is sufficient to
determine the solution g(¢) both into the future and into the
past, regardless of the choice of F. If M is identically zero for
all values of ¢ and g, then Eq. (1.1) becomes a constraint.
The tricky situation occurs if M (g, ¢) is not identically zero,
yet is zero for certain values of ¢ and 4 (the set of which we
label by @). Then as g¢(¢f) evolves, whenever
M(q(1), q(£))#0,Eq. (1.1) determines the continued evolu-
tion. Yetif M(g,q) = O, then Eq. (1.1) fails to specify ¢, and
there can, in principle, be a jump in § (the analogy to charac-
teristics is thus evident).

Whether, in fact, such discontinuities can occur in oth-
erwise smooth solutions ¢(¢), depends critically upon the
properties of F(q, ¢) as well as of M (g, ¢). For some choices
of these functions, the jumps do occur in certain solutions.
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For other choices of F and M, all solutions with initial data
(g(0), 4(0))&Q are forced by Eq. (1.1) to avoid the set @
while solutions with (¢(0), ¢(0))eQ stay in Q for all time.
Finally, there are choices of the functions Fand M for which
most trajectories avoid Q, but certain ones do not and these
evolve smoothly in and out of Q. In none of these three cases
can one claim that the initial value problem works in the
ordinary sense. Yet in both the second and the third cases, all
solutions evolve in an effectively deterministic way.

It would be nice if one could demonstrate that this same
phenomenon of “effective determinism” characterizes all of
the solutions of some of the field theories that permit space-
like characteristic hypersurfaces. While we have not been
able to do this, we have been able to show that in the case of
the GEM theory,'? this behavior does occur if one restricts
attention to a certain class of cosmological models.

We describe these results in this paper. First, however,
we briefly discuss characteristics in general field theories and
note how the spacelike ones occur (Sec. IT). Then in Sec. III,
we describe the GEM theory and recall that it allows space-
like characteristics'® (timelike ones as well). In the first part
of Sec. IV, we impose a number of symmetry conditions on
the fields of the GEM theory and thereby vastly simplify the
system of field equations (and also vastly restrict the class of
solutions). Finally, in the latter part of Sec. IV, we use phase
plane analysis to show that these simplified (Kasner-like)
models are all effectively deterministic.

Il. CHARACTERISTIC HYPERSURFACES

Characteristic hypersurfaces play an important role in
the study of systems of partial differential equations, and so
accordingly much has been written about them.!* Here we
only make a few remarks, focusing on what allows spacelike
characteristics to occur.

We start by considering a scalar field theory on Min-
kowski space-time background, with the scalar field
@: R*R to satisfy the field equation

M@, Vo, 71 V.V, p=Flg, Vo,7]. (2.1)

Here M*” and F are both specified functions of @, of Vg, and
of the Minkowski metric 7. (We assume the summation con-
vention.) Now considér a properly embedded submanifold
23 in Minkowski space-time. We wish to rewrite (2.1) in a

form that isolates from the rest of the equation the term

containing second derivatives normal to =>. In this form, we
can identify whether or not 3 can be a characteristic hyper-
surface, and we also have the appropriate setup for turning
(2.1) into an evolution equation. So let us choose local co-
ordinates (x° x', x%, x*) compatible with 3 in the sense
that {3 /dx', 3 /3x?, 3 /3x°} are tangent to 3°. We may re-
write (2.1) in the form

M®p= —2MV,p—MIV,V,p+F, (22)

where we use the “.” to denote V; and where the Latin in-
dices run from 1 to 3 (Greek go from 0 to 3).

Now let us presume that @ and ¢ are known on 3 (the
derivatives of ¢ and ¢ tangent to =* are then automatically
known as well). If M ® is nonvanishing everywhere on =,
then (2.2) determines @ everywhere on 2>, It follows that
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there are no discontinuities in ¢ across 2% and one has a
chance of evolving ¢ from = into a space-time neighbor-
hood of 2. If, however, M ® has zeros on 33, then § is not
fully determined, discontinuities may occur, and the Cauchy
problem (relative to =?) fails. If M ® vanishes everywhere on
33, then =* is defined to be a characteristic hypersurface.

The Klein-Gordon field equation, of course, takes the
form (2.1). It has M [p, Vg, 7]l =9*, and
Flp, Vo, n] = m’p, so we have M® = 5~1(dx° dx°).
This vanishes iff dx° is null, and so 3? is characteristic iff it is
a null hypersurface. Thus in the Klein—-Gordon theory,
spacelike characteristics do not occur.

As an example of theory in which they do occur, consid-
er the choice

MY =9 — VeV e (2.3)
and F=m?p. In this case, M % =5 '(dx° dx°) — ¢¢.
Thus for any choice of =* (spacelike, null, timelike, or
mixed) there exist sets of data (@, ¢)|5» such that = is char-
acteristic.

Most field theories (including the one we shall be focus-
ing on) have more than one field component, so we need a
generalization of the notion of characteristic hypersurface
for a field theory whose field equations take the form

Mg [y°, VYC, 91V, V, 9% = E* [¢°,Vy°, 9]

24)

(where the capital Latin indices range from 1 to n, the total
number of field components in the theory). The generaliza-
tion is straightforward and obvious for those theories with
no gauge freedom. In such theories, if we again choose a
hypersurface 3° embedded in space-time and work with hy-
persurface-compatible coordinates (x° x'), we may rewrite
(2.4) as

M4A® P = —2M40 V)% — MLV, V9P + B4 .

2.5)
Here, if M£® is an invertible matrix (at each point in 3*)
then we may solve (2.5) for ¢ in terms of the data
(¥%, )|, and no discontinuities are allowed. If, how-
ever, det(M 4%) vanishes anywhere, then (2.5) fails to de-
termine ¢# and the problems discussed above follow. So in
analogy with the definition above, the hypersurface =* is a
characteristic hypersurface iff det(M 4°°) = 0 everywhere
on 23 [for the given data (¢*, ¢€) |3 ].

As in the one-component case, there are simple exam-
ples of multicomponent field theories that have no spacelike
characteristics—e.g., the vector Klein-Gordon field theory
with field equation V2y* = m?y* —and there are also sim-
ple examples that permit spacelike characteristics—e.g., the
theory with field equation

(17‘“' - ¢p¢v )vpvv 'pa = mZ'/f' .

We need two more generalizations: We need to consider
field theories with gauge freedom, and we need to allow the
metric to be a nonfixed, dynamic field. Neither generaliza-
tion causes much trouble. In the case of theories with gauge
freedom (e.g., the Maxwell field) one finds that, regardless
of the choice of 2* and regardless of the values of the fields on
33, there are some components of the fields (e.g., 4,) whose
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second derivatives are not determined by the field equations.
This seems at first to be a disaster; however, one also finds
that the strange components can invariably be isolated, and
one can then base one’s analysis of characteristic hypersur-
faces and of the initial value problem on the behavior of the
other components (freedom of the strange components from
determination just reflects the freedom of gauge). As for
allowing the metric to be a dynamic field, it does follow that
the determination of whether 3? is spacelike, timelike, or
null becomes dependent on the field data. However, the de-
finition of characteristic hypersurface does not change, and
this new twist is harmless.

Toillustrate this, and also to provide a familiar standard
with which to compare the GEM theory when we discuss it
below, we shall now describe the Einstein-Maxwell theory
and how its characteristic hypersurfaces behave. The Ein-
stein-Maxwell action principle is given by

fEM(g,A)=J. [\/—g(R—iF’"' F;w)]’ (2.6)
M* 4

where the metric g,, and the vector potential 4, are the
basic fields, R is the scalar curvature based on the Rieman-
nian connection associated tog,,, , and F,,,, is the electromag-
netic field associated to 4,,. This action is invariant under
gauge transformations A,—A4, +V,4 and also under
space-time diffeomorphisms. Now varying (2.6) with re-
spect to g and A, one obtains the Einstein-Maxwell field
equations:

G, =1/2 (F,, F:—1/4g, FPFz), (27a)
Vv, F£=0. (2.7b)

These may be cast into the form (2.4). Then if we choose a
hypersurface 2* along with the appropriate coordinates, we
get the following (analogous to 2.5):

G #E)-G).

J

(2.8)

Here, we use the convenient “paired index convention” ex-

emplified by the identity

&1 811
82 812
g5 8| ¥ || 52
4 822

&s 823

(2.9)

The matrices ¢#% and P Y are defined by

ql 1 2q12 2q13 14 2q15 1
q2l 2q22 2q23 q24 2q25 26
QAB — . . . . .

Q
o0

.om

q61 2q62 2q63 q64 2q65 q66
(2.10a)
with
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qAB(_>qabcd:___£(ga0gb(c )0+gboga(c )0
_gaOgbOgcd_ga(c )bgOO
— g8 + g ")
(2.10b)
and

pli=g"g" —g°¢g°, (2.11)
while the vectors C* and D' are certain functionals of the
field data (4, 8., 4, 8., )|z that we do not need and
therefore will not write out explicitly.

Note that in (2.8), the g,, and g, and the 4, are missing
from the list of second “time” derivatives. These are the
components of the gravitional and electromagnetic fields
that are left out of the dynamics for any =2 and for any initial
data. They are in a certain sense “pure gauge” (elsewhere'®
we have labeled them “atlas fields”) and can be disregarded
in the analysis of the characteristics.

For a given set of Einstein-Maxwell field data, = is a
characteristic hypersurface iff either det(Q*? ) or det(PY)
vanishes everywhere on 23, One easily verifies that if 3 is a
null hypersurface (which is true iff g°° = 0 and g% #0) then
Q"% and PY both are degenerate. A bit more work shows
that, in fact, Q or Pis degenerate only if 3° is a null hypersur-
face. It follows that for the Einstein—Maxwell field theory,
the characteristic hypersurfaces are necessarily tangent to
the local null cones and therefore are never spacelike (with
the attendent problems). We note again that in the Einstein—
Maxwell theory the notion of spacelike, etc. depends upon
the fields. Regardless, we obtain well-defined causal propa-
gation, and the Einstein-Maxwell theory is straightforward-
ly shown to have a well-posed Cauchy problem.*

lil. THE GENERALIZED EINSTEIN-MAXWELL FIELD
THEORY

The GEM theory!! may be characterized as the most
general classical theory which (1) involves (only) the two
fields g,, (gravitational metric) and 4, (electromagnetic
potential); (2) is derived from an action principle .# (g, 4),
which is invariant under space-time diffeomorphisms; (3)
conserves both charge and energy-momentum (gauge invar-
iance is a consequence of this assumption); (4) has second-
order field equations; and (5) becomes the standard Einstein
theory if F,,, = 0 and becomes the standard Maxwell theory
if R*,,g = 0. These conditions together imply that the ac-
tion must take the form*

FLaem (8, 4)

1
[ e )

='yEM(g9A)+%fV _gFapFYAR:B:A, (31)

where R ?% = ¢**'R,,,*°€;,,, (a double dual) and p2 is a
coupling constant.
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Varying . g (8, A), we obtain the field equations for
this theory:

G =} [FuF.," — 18, F*F 4 ]

— u[F, FPR*%,% + VEF% VF% | (3.22)

and
V. F*+ (u/2)V, Fg R =0. (3.2b)

The physical consequences of the GEM theory, and the
degree to which it is consistent with experiment and observa-
tion, are discussed elsewhere.'' Here, our main concern is
with the characteristics and their consequences. So we pro-
ceed to carry out the sort of analysis discussed in Sec. IL
Since the fields and the gauge freedom are the same as in the
Einstein—-Maxwell theory, this analysis leads to an equation
similar to Eq. (2.8). In particular, we get!?

0% S\ (85 (C*

(W'ﬂ P/ \4,) =B/ o
where
P4:=PY+puR% [for P! from (2.11)], (3.4)

1
SYer S = 4 —— (Pmdagiied | Pmibieyy F .,
«> + 2(detg) ( + ) d
(3.5)
11 ~12
4B — q Zq ) 3 6
Q (same pattern as (2.10a)/’ (3.6a)

with
' > g°: = g | [11/2(det §) 1 Fy, Fy e e 150,

for ¢** from (2.12b), (3.6b)
and
Vll 2V12 2V13 V14 2V15 V16
Vm= V21 2V22 2V23 V24 2V25 V26 s
V31 2V32 2V33 V34 2V35 V36
(3.7a)
with
VB =155, (3.7b)

Again, the expressions for C“and D are not needed.
To see whether 2% is a characteristic hypersurface for a
given set of field data (4,, 4,, g;, 8;), we must calculate

0 u
det(uV P

This is, unfortunately, a real mess in general. One can show,
however, that spacelike (as well as timelike and null) char-
acteristic hypersurfaces can exist. As a simple example, let
M*=S3XR, let 2* = §3x {0}, and pick data

8y =0y, gy"_"o’ A”=0, Am=(l/x)¢m’

(3.8)
where o, is the spherical metric of constant positive curva-
ture with R = — 1/(3u), @,, is a divergence-free vector

harmonic on round S 3, and x is a normalizing constant set to.

guarantee that 4, 4,0™ = ( — 1/u). If we take the cou-
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pling constant u to be negative, then it is straightforward to
check that, for this data, the matrices S 4 and V® vanish,
and det(Q4%?) = 0 everywhere on 2>, In addition, the fields
(3.8) satisfy the constraint equations of Horndeski’s theory
[obtained by setting v = 0in Eq. (3.2) ]. Thus we have valid
data for which 2 is a spacelike characteristic hypersurface.

Does this mean that the Cauchy problem fails for the
GEM theory? We address this question in the next section.

IV. STUDY OF SPACELIKE CHARACTERISTICS IN A
SMALL CLASS OF SOLUTIONS

While the analysis of the entire set of spacetime solu-
tions of the generalized Einstein-Maxwell theory is beyond
the scope of this (or any other) paper, we can obtain a fairly
complete picture of a very small subset of such solutions.
This subset—or “minisuperspace” in the parlance of geome-
trodynamics'6—is defined by the following conditions:

(a) M*=R*,

(b) isometry group =R3*XS!, (4.1)

(¢) 4, is pure electric.

The second of these conditions is the key one that makes
this class manageable. It reduces us to the set of locally rota-
tionally symmetic (LRS) Bianchi type I homogeneous
space-times. In appropriate coordinates (¢, x, y, z) the fields
in such space-times depend only upon # and so the field equa-
tions are reduced from a system of partial differential equa-
tions to a system of ordinary differential equations.

The fields may be written in the form

g= —dt*+a(t)[dx* +dy*] +B(t)dZ,
(4.2)
Ad=a(t)dz.

Then if we use a convenient set of conjugate variables L(¢),
K(t) and & (1) (these are essentially the canonical momen-
tum variables conjugate to a, B8, and a, as defined via the
Legendre transformation ), the field equations are as follows:

L?4+2KL=%%*(1-3uL?), (4.3)
a= —2aL, (4.4a)
3= — 28K, (4.4b)
a=(1/{a)¥, (4.4c)
L=3L?—}(1 —uL®)#?, (4.52)

K =K(K+L)+#[3+pKL —L*(1 +2p) +p#?]
—uL*®*(1 4+ 2uL?)/(1 —puL?), (4.5b)
(1—pL®)& =FL[(2—p&*) +uL*(1 +u&?].
(4.5¢)

Equation (4.3) is the one constraint on the choice of initial
data for these space-times. Equations (4.4) and (4.5) spe-
cify the evolution.

Where are the spacelike characteristics? If the coupling
constant u is negative, then, in fact, there are none. However,
for positive u, a spacelike hypersurface with specified data
(a,B,a, L, K, &) is characteristic iff 1 — uL ? = 0. This is
evident in (4.5¢), and also in (4.5b).

Before proceeding to analyze the behavior of solutions
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of the system (4.3)—(4.5), we note that conditions (4.1)—
which we have used to reduce the full system of Eq. (3.3) to
the simplified (4.3)-(4.5)—are consistent with the full sys-
tem. That is, if one chooses initial data of the sort that condi-
tions (4.1) demand, and if one then evolves using (3.3), the
resulting space-time will satisfy conditions (4.1) for all time.
The verification of this is straightforward."”

The most useful method, for our purposes, of studying
how the solutions of (4.3)—(4.5) behave is via a qualitative
trajectory (or “phase”) portrait. For a six-dimensional sys-
tem, which (4.3)-(4.5) appears to be, trajectory portraits
are rather unwieldy. However, we can, in fact, reduce our
system to one with only two essential dimensions as follows:
First, we break the six-dimensional system into a pair of
three-dimensional systems, one of which is a slave to the
other. The primary system consists of Eq. (4.3) and (4.5); it
is independent of «, £, and @ and hence may be solved by
itself for L(t), K(2), and & (¢). The slave system involves
Eq. (4.4); using the fields L(¢), K(z), and & (¢), obtained as
solutions to the primary system, one solves it for a(?), 5(?),
and a(¢). Focusing on the primary system, we may now use
the constraint equation (4.3) to reduce it to two dimensions.
Specifically, we solve (4.3) for X,

K= (172L)[#*(1 —3uL?) — L?]; (4.6)

and then as long as we are careful with L = 0, we are left with
just a two-dimensional unconstrained system with the evolu-
tion equations
d 3 1
—L=>L?>——(1—uL*»%?
a2 y (=l
and

(1—pL?) % & = FL[(2—p8?) +uLl’(1 +p8?)],

(4.7a)

(4.7b)
for the variables L and &.

We have studied (4.7) both qualitatively and numeri-
cally, with particular attention given to the behavior of solu-

" tions that have (at some time in their history) data that

approach the characteristic values—namely L = + 1/\g,
& = anything.'® The trajectory portrait for this system is
sketched in Fig. 1. The most striking feature of this portrait
is the role of the locus of characteristics (by which we mean
the points in phase plane with L = + 1/yx) as an almost
impenetrable fence. Only the “pure Kasner” space-times—
those with & = 0—have trajectories that intersect this lo-
cus. Other solutions approach arbitrarily close but never

reach it. Indeed, one finds that for L = + 1/, Eq. (4.7b)
becomes a constraint that is only satisfied by & = 0.

What this implies is that the only space-times in the class
under consideration, which contain spacelike characteristic
hypersurfaces, are the pure Kasner space-times; and in
these, there are no discontinuities of any sort across those
spacelike characteristics.

More can be said about the behavior of the full class of
these Bianchi type I, LRS, pure electric space-time solutions
of the GEM field equations, as portrayed by the trajectory
portrait (Fig. 1). We shall briefly discuss some of this
further in the Appendix. But regarding the main question—
do spacelike characteristic hypersurfaces develop in solu-
tions, and do they cause trouble—the issue is settled for this
small class of space-times. Spacelike characteristics rarely
develop; and when they do, they cause no trouble. The
Cauchy problem essentially survives.

V. CONCLUSION

The set of space-time solutions of the generalized Ein-
stein—-Maxwell theory that we have examined is a very re-
stricted one. And there is no sense in which the GEM theory
is “generic” among all those classical field theories that seem

[
|

FIG. 1. L-& trajectory portrait for
Bianchi I LRS electric model space-
time solutions of the GEM theory.
These are representative orbits of the
primary variables L and & for the
model solutions of the GEM theory
discussed in Sec. IV and in the Ap-
pendix. Note the barrierlike behav-
ior of the loci of characteristic data:
L = + 1///u. We have not included
any trajectories with & <0; these are
mirror images of the & > O trajector-
1es8.

2T STy 0

L
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FIG. 2. L-& trajectory portrait for
Bianchi I LRS electric model space-
time solutions of the Einstein-Max-
well theory. These are representative
orbits of the primary variables L and
. & for model solutions of the Ein-
stein-Maxwell theory (u—0 limit of
GEM). Forsmall |L | and small | &|,
the trajectories are much like those
of Fig. 1. For larger |L | and | &}, the
character of the trajectories is quite
different for the two theories.

-2/ VY 0

to allow spacelike characteristic hypersurfaces. Yet, our re-
sults do give some measure of support to the contention that,
even though certain field theories admit spacelike character-
istics in principle, these almost never actually occur in solu-
tions, and when they do occur there are rarely any discontin-
uities across them. The solutions are then essentially
deterministic.
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APPENDIX: SOME FEATURES OF THE BIANCHI | LRS
SOLUTIONS OF THE GEM FIELD EQUATIONS

Here we mention some of the features of the solutions of
(4.7) that, though somewhat peripheral to the main point
regarding spacelike characteristics, are still interesting. In
this discussion, it is useful to keep in mind how the behavior
of K is related to that of L and & [via Eq. (4.6) ], and how
the behavior of the metric components o and Bis determined
by integrating over L and K: from (4.4), we get

a(t) =exp(—J:L),
B(1) =exp(—-J:K).

First, we recall that the pure Kasner (LRS) space-times
(which solve the Einstein equations as the & = 0 limit of the
GEM equations) are represented by the trajectories along
the & = 0 axis in Fig. 1. The big bang in these cosmological
models occurs at large |L |; as time proceeds and |L | de-
creases to zero, the space-time approaches (but never

(Ala)

(Alb)
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T

+2//

reaches) a large maximal static state.

Other than these Kasner models, there are basically two
types of solutions here (ignoring the direction of time). The
first kind, those with |L |> (1Y), are much like the
Kasner models in the remote past: They start with a big
bang, and then gradually decelerate their expansion (with
|L | decreasing). As time proceeds however, || begins to
grow exponentially regardless of how small its initial value
was. Within a finite time, & blows up, carrying K along with
it, and one reaches a singularity. (Note that for K— o,
—0, and so the metric becomes singular.) Hence, space-
time solutions of this kind, unlike the Kasner models, have
finite lives with singularities on either end.

The other kind of space-time—those with |L | < (1/Ju)
—are more like Kasner regarding their ultimate fate. They
have one big bang type singularity in the past, and approach
asymptotically a maximal static state. This is not apparent
from Fig. 1, since L is finite throughout the trajectories of
this type. Recall, however, that if L approaches zero with &
finite, then K blows up, thereby forcing 8 to vanish (hence a
singularity). So a space-time represented by one of these tra-
jectories must terminate (in the past) at the intersection of
its trajectory with the L = 0 axis (for & #0)

Note that the Kasner solutions in this system are unsta-
ble to perturbations in &. That is, given any set of Kasner
datawith L #0,and L # + 1/y/u, ifone perturbs & then the
resulting space-time will have large & either in the past or in
the future.

It is interesting to compare the solutions just discussed
with the analogous space-time solutions of the standard Ein-
stein~Maxwell equations. The trajectory portrait for these is
sketched in Fig. 2. We see that in many respects, these space-
times are much like the |L | < (1/y) solutions of the GEM
theory.
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The structure of the space of solutions of Yang—Mills equations is examined for solutions that are
required to have a specified set of infinitesimal space-time symmetries. It is shown that when the
set consists of Killing vector fields, which are tangent to a compact spacelike Cauchy surface, the
space is a smooth ILH manifold near each solution that has only trivial gauge symmetries.

I. INTRODUCTION

Arms’ and Moncrief 2 have shown that when a space-
time manifold has a compact spacelike Cauchy surface M,
the Yang-Mills (YM) equations can be split up into evolu-
tion and constraint equations on M. By considering infinite-
simal isometries, we give necessary and sufficient conditions
for a YM field to be homogeneous (see Sec. IV for defini-
tion) relative to a given Lie algebra of Killing vector fields, in
terms of the Cauchy data on M.

Furthermore, Arms® examined the structure of the
space of solutions of the YM equations for such space-times.
She has shown that this space is a smooth (ILH) manifold
near each field that has only trivial gauge symmetries. In this
paper, it is shown that this result also holds when we restrict
ourselves to those fields that are required to be homogeneous
relative to a set of Killing vector fields, which are tangent to
the subspace M.

The constructions and proofs use standard results about
elliptic operators. These operators are defined on spaces of
tensor fields, which are defined on the compact manifold M.
The fact that the space of smooth gauge fields on M is an
affine ILH space (an inverse limit of Hilbert spaces, as de-
fined by Omori*) easily follows from the work of Kondracki
and Rogulski.’ The rest of the material uses this fact to estab-
lish the main result.

Notations and general definitions are given in Sec. II.
Further notation is introduced in Sec. I11, where the work of
Arms on the structure of the space of YM fields is reviewed.
In Sec. IV, symmetry of gauge fields®’ is reviewed and some
results of Sec. III are extended to the space of homogeneous
gauge fields. Only the infinitesimial space-time symmetries
are considered. .

In Sec. V, asymmetry of a YM field is expressed in terms
of the Cauchy data on a compact spacelike Cauchy surface of
a four-dimensional space-time. This is followed in Sec. VI by
the extension of the main results of Arms to the space of
homogeneous YM fields. Homogeneity here is with respect
to Killing vector fields, which are tangent to the Cauchy
surface. The concluding remarks in Sec. VII discuss the cor-
responding results when the vector fields are not all tangent
to the Cauchy surface. A primary example in this respect is a
space-time that is static.

Il. NOTATIONS AND DEFINITIONS

Let G be an n-dimensional Lie group with Lie algebra g.
Let Mbe a (real, paracompact) smooth manifold of dimen-
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sion m; m: P—M, a principal G-bundle; @, a connection form
on P; and {2, the corresponding curvature form.

By an automorphism of P, we mean one that is also a
bundle map. By a tensorial form on P, we shall mean one that
is of type Ad G (cf. Kobayashi and Nomizu®). A tensorial
form on M is a pullback of one on P by a (local) cross sec-
tion.

The connection form w represents a gauge field on M, of
type P, with gauge group G (the internal symmetry group of
the field).

A gauge (on M, of type P) is simply a trivialization of
the principal bundle. Relative to a gauge, the connection
form @ on P can be expressed uniquely by a family of forms
{4} each defined in an open subset U, of M (see Ref. 8, p.
66). A choice of gauge implies the use of the special cross
sections o,,: U,—P, which result from the trivialization.
The local field A4, is related to w by 4, = c*w. In the sequel
we drop the subscript a and write 7, 4, and U.

The g-valued one-form A is usually referred to as a (lo-
cal) gauge potential of the field, and F = o*{} is the corre-
sponding field strength.

Let < denote the collection of all gauge fields on M, of
type P. Each element of o7 will be considered (relative to
some fixed gauge) as being defined on M as described above
and will be expressed by a representative A of the collection
{4,}.

Similarly, each tensorial form on P, relative to a gauge,
may be represented on M by a collection of locally defined g-
valued forms. The set of tensorial 7-forms &", will therefore
consist of those g-valued r-forms on M that are pullbacks of
tensorial 7-forms on P. For example, the field strength Fis an
element of 2. The set 2" is a real vector space of infinite
dimensions.

Suppose that {X,,X,,...,X, } is a basis for g. Then, any g-
valued r-form 3, say, may be written uniquely as the sum
¥°X, (summed over the a’s from 1 to n), where each ¢*is a
real-valued r-form.

Note: The summation convention will be used through-
out.

If ¢ is another g-valued s-form defined on the same space
as ¢, then the (7 + s)-form denoted by b, (#) and defined by
(the bracket)

by (¥) = [¢9] = (° A [ X, X, ] (2.1

is independent of the basis chosen.
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As examples, of the use of this bracket, we have the
curvature form

Q=d@+£bw(a)) s
and

D¢ =d¢ + b,(4)
is the covariant derivative of any tensorial form ¢ relative to
the connection form w.

In Secs. V and VI we use the notation in Ref. 1 for a
space-time manifold as follows.

Let *S denote a four-dimensional space-time manifold
that has a compact spacelike Cauchy surface M, “g, the met-
ric on *S; and g, the restriction of g on M.

The metric *g has signature (— + + + ) andsog is
positive definite.

In general, tensors on *S have a preceding superscript 4,
while tensors on M do not.

For points of S that are on M, we shall often use Gaus-
sian normal coordinates (GNC) (x°x!,x%,x*), where x° = ¢
andt=0o0n M.

Lowercase Greek indices range from O to 3 and are
lowered or raised by *g; Latin indices from the middle of the
alphabet range from 1 to 3 and are manipulated by g.

Let 5 denote the future pointing unit normal to M.
When we use the GNC, the resulting frame of vector fields
d, = d/dx* is such that

Gy=0d, =3.

lil. THE SPACE OF GAUGE FIELDS

Several results on the space ./ of connections on a prin-
cipal fiber bundle over a compact Riemannian manifold
have been announced since Singer® published his paper in
1978. In particular, the action of the group & of gauge trans-
formations on & has been shown to have a slice (see, e.g.,
Refs. 5 and 10). More recently, Arms has pointed out a cor-
responding slice for the action of & on the cotangent bundle
over o from a more general result concerning momentum
mappings."'’

The latter result will be stated in this section in terms of
the action of & on the tangent bundle .7« over /. It will
then be shown that with an appropriate definition of space-
time symmetry for elements of .7 .27, the action of the more
general group of automorphisms of the principal bundle cov-
ering a given group of isometries, has a slice. In fact this slice
may be chosen to coincide with the slice used in Refs. 3 and
11 above. This will be useful in proving the main results.

Let M be a compact oriented Riemannian manifold of
dimension m, and G a Lie group of dimension n. Suppose
that the Lie algebra g of G has a positive definite real inner
product ¥, which is invariant under the adjoint action of G
on g. Let Pbe a principal G-bundle over M.We introduce the
usual (see, e.g., Refs. 3 and 12) inner product {,) on the
vector space &Z” (and extend it componentwise to "X Z*)
as follows.

If B and E are tensorial r-forms on M, then

(B,E) = f trace (BA+E)
M
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where * is the Hodge star operator and the trace is relative to
v. In particular, relative to any basis {X,,X,,...,.X, } of g,

trace (BA*E) =y ,B°A (*E%),

where 7., = y(X..X,) .

It is easy to show that {,) is well defined if we recall that
the values of tensorial forms on M at each point are uniquely
determined up to the action of Ad G, and y isinvariant under
this action.

Denote by .7, the collection of all smooth gauge fields

over M of type P, as described in Sec. II. Since any two con-
nection forms differ by a tensorial one-form, the space .« is
an affine space modeled on the vector space 2.

Let o, denote the collection of all gauge fields on M of
Sobolev class H*, i.e., the components of each element of
&, in local coordinates, are locally H *-functions. Then
&) carries the natural structure of an affine space modeled
on the Hilbert space &'} of tensorial one-forms of Sobolev
class H* (see Ref. 5).

It follows from the continuous inclusion &}, , C P},
and the Sobolev lemma, that &' can be idéntified with the
intersection of all the Hilbert spaces &} for k>m/2 + 1.
Then 2, as an inverse limit of these Hilbert spaces (an ILH
space), is a smooth ILH manifold, as defined by Omori.*
The affine space .« is therefore also a smooth ILH manifold.

Note: All smooth ILH manifolds will be referred to sim-
ply as smooth manifolds.

Another example of a smooth manifold is &" for
0<r<m. This follows from considerations similar to those
forr=1.

We now review part of the work of Arms® concerning
the space of gauge fields, in order to establish notation and
the slice theorem.

Since the smooth manifold .7 is an affine space, we can
identify its tangent bundle ..« with & X Z!; so

T =dXD'.

Now, (, ) is a (weak) Riemannian metric on .« and hence
alsoon 7 &
Let K: .7 o —2° be defined by

K(4,E) = —D*E,

where D * is the adjoint of the operator D relative to the
metric (, ), and D is covariant differentiation relative to 4.
Note: All adjoints of operators will be relative to the
inner product { , ). Formulas for these adjoints are calculat-
ed in the usual way of integrating by parts. They will differ
from those of Arms because she uses the cotangent bundle
J*o (the natural phase-space) and tensor densities in-
stead of our tangent bundle and tensor fields.
It is easy to show that K is a smooth map whose deriva-
tive at (4,E) is given by
K'(ae)= —D%*e —b2E, 3.1)
where b, is defined by Eq. (2.1) and the tangent space is
identified with &' X & 1. Moreover, its adjoint is given by
K'*(V) = (bgV,—DV) 3.2)

where Vis a tensorial function.
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The operator K '* is elliptic because the highest order
derivativesin K "*(¢) are given by — dy of the second com-
ponent, and d is an elliptic operator on smooth functions.

Note: Ellipticity here is in the sense of Douglis and Nir-
emberg as extended by Hormander."

- Since K '* is elliptic, we have the orthogonal (direct
sum) splittings (relative to (, ))

D'YXG'=ImK*oKerK'
and
D'X D' =ImJoK '*eKerK'oJ,

where J(a,e) = (e, — a).

Remark: Equation (3.3) is true if we replace &' by the
Hilbert space &}, for suitably large k. Then, by applying the
regularity lemmas (available because of the ellipticity of the
operator), the result extends to 2.

Let & denote the group of all gauge transformations,
i.e., allautomorphisms of P that cover theidentity map of M.
Then ¥ acts on « and &' (and hence on their Cartesian
product) in the usual way, viz. by pullbacks. From the re-
sults in Arms, we deduce that for each (4,E) in 7 &, the
orbit 9 (A4,E) of (4,E) under ¥ is a smooth manifold. Its
tangent space at (4,E) is precisely Im JoK '*, the first factor
in Eq. (3.3). This space is a closed subspace of Z'X 2
because of the ellipticity of JoK '*.

The action of ¢ on 7 .« has a (smooth) slice .% at
(4,E), which may be given by an open ball

Z ={(4 +a,E+e): (ae)ecKerK’'oJ,

pl(a,e),(0,0)) <8} (3.4)
for some & > 0 and (strong) metric p, which may be chosen
to be invariant under gauge transformations and the isome-
tries of M by using the inner product ¢ ; ). This result implies
the following: Let f be any gauge transformation. (1) If
HAE) = (4,E), then ()T L. (2) If A(F)nS is not
empty, then f(4,E) = (A4,E).

Moreover, 7 & s
Y (A,E) X .7 near (4,E).

(3.3)

locally diffeomorphic to

IV. SPACE OF HOMOGENEOUS GAUGE FIELDS

We now consider homogeneous gauge fields. Although
our main results concern symmetries relative to Killing vec-
tor fields, we also use isometries in establishing the results.

Let m: P—-M, G and @ be as in Sec. II. By an automor-
phism of @ is meant any automorphism of Punder which o is
invariant.

Let 4 be any transformation of M. The gauge field on M,
defined by the connection form @ on P, is said to have A as a
symmetry if there is an automorphism L (#) of w that covers
h.

Suppose that H is a Lie group of transformations of M.
The gauge field is said to be homogeneous®’ relative to H if
each A in H is a symmetry of w. In such a case there is a map

L: HXP-P
such that
L(h,p) =L(h)(p),
where L (%) is an automorphism of @ covering 4.
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Remarks: In general, homogeneity does not imply that
the connection is invariant under some action of H on P
covering the given action on M. Moreover, the above defini-
tion (of homogeneity) for symmetry may be more appropri-
ate in certain important physical examples (see Refs. 6 and
7). However, if the map L is smooth and H is a one-param-
eter group of transformations, then homogeneity is equiva-
lent to the invariance of the connection under an action of H
on Pcovering the given action (cf. Proposition 3.2 of Ref. 7).
This result will be useful later.

Now let H be a Lie group of isometries of M. Suppose
that L (H) is the group of all automorphisms of P that cover
the elements of H. Then the action of L(H) on P induces an
action on the set of connection and tensorial forms. This
action on .« and 2! is given (locally, for a fixed gauge) by

L(h)(4) = o*{L(h)*o) (4.1)

and

L(h)(E) =o*(L(h)*¢), (4.2)
where L(h) covers h, o is an appropriate (local) cross sec-
tion of P (see Sec. II), and A and E are elements of o and
' corresponding to w and ¢, respectively. The action ex-
tends to Cartesian products componentwise. For example,
on J & the action is then given by

L(h)(A,E) = (o*L(h)*w,0*L(h)*$). 4.3)

Proposition 4.1: Any automorphism of P thatinduces an
isometry on M is also an isometry of &".

Proof: Suppose L (#) is an automorphism of P that cov-
ers the isometry 4 of M.

Let

L) (o, (x)) = ooh ()} [ Ton, ()17 (4.4)

for some local cross sections o, and o,, with T, (x) an
element of G. Then, for any tensorial r-form ¢ on P,

otL(h)*¢ =Ad T, h*(024) . (4.5)

Note that, by our convention, o¥¢ and o%¢ are repre-
sented by the same symbol on M because they represent the
same tensorial form on P. Suppose then that a and e are
tensorial 7-forms on M. We calculate the inner product

= {h *a,h *e)

= {(a,e) .
The last equation holds because 4 is an isometry (cf. defini-
tion of {, }). Hence, L(A) is an isometry of &".

Definition: Let h be any diffeomorphism of M. We shall
say h is a symmetry of (4,E)e7 o if

L(h)(4,E) = (4,E)

[cf. Eq. (4.3)] for some automorphism L (h) of the connec-
tion, which covers 4.

Proposition 4.2: Suppose that A is an isometry of M and a
symmetry of (4,E)e7 o/ . Let & be the set defined in Eq.
(3.4). Then, for any automorphism L () of P, which covers
h, the following hold.

(1) LA (A,E) = (A,E), then L(A) ()T S

2) If LAW(AINS is not empty,
L(h)(A,E) = (A,E).

(from invariance of ¥)

then
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To prove this proposition, we need the following lemma.

Lemma 4.1: Suppose that (4,E)e7 o and L(h) is an
automorphism of P that covers h and satisfies
L(h)(A,E) = (4,E). Then L(h) is an automorphism of the
vector subspace Ker K 'oJ of ' X 2.

Proof: Let fbe any gauge transformation. Then

L(h){f(4,E)) =L(h)(f(L(h) " (4,E)))
= (L(h)"fL(ANA.E) .

Since L (k) ~fL (k) is a gauge transformation, we conclude
that L () maps & (4,E) into itself.

Now, L(h)(A,E) = (A,E) implies that L (#) maps the
tangent space Im JoK '* of & (4,E) at (4,E) into itself.

Since L (4) is an isometry of 22X 2}, we conclude
from Eq. (3.3) that L(/#) maps Ker K 'oJ into itself.

Proof of Proposition 4.2: Suppose L(h)(4,E) = (A,E)
and (4 + a,E + e) lies in .. From the definition it follows
that

L(h) (A+a,E+e)=L(h)(4,E)+ L(h)(ae)

= (4,E) + L(h)(a,e)
= (A9E) + (al’el) s
where (a,,e,) lies in Ker X 'oJ, by Lemma 4.1.

The metric p used to define the ball .#, is invariant un-
der & and the isometries of M. So p is invariant under L ()
(cf. proof of Proposition 4.1). This implies that
L(h)(S)C & and so (1) is proved.

To prove (2), suppose that L(h)(#)A.# is non-
empty. Since (4,E) has symmetry A, there is a lift, L,(4)
say, of 4 such that

Ly(h)(4,E) = (4,E) .

Since L, (h) covers A, there is a gauge transformation f
such that L(h) = L,(h)of.

Since L(h) (% )n5 is nonempty, there exists (4,,E;)
and (4,,E,) in .# such that L(k) (4,,E,) = (4,,E,). But,

L(h) (A 11E1) =f(L1(h) (AI,EI)) =f(A3,E3)
for some (A4;,E,) in #. The latter follows from (1) with L,
instead of L.

Hence /(. )n.¥ is nonempty. Since .¥ is a slice for the
action of ¥ on J & at (4,E), this implies that
S(4,E) = (4,E). So,

L(h)(A,E) =L,(h)(4,E) = (4,E) . n

Let us now examine the question of infinitesimal isome-
tries. These are the kinds of symmetries that will be consid-
ered in the main results.

Werecall from Refs. 6 and 7, that a vector field X on M is
a symmetry of the connection form o if it lifts to a G-invar-
iant vector field X on P such that

Lyw=0. (4.6)

We also recall that X is a symmetry of o if and only if @ is
invariant relative to the flow of X, i.e., if and only if the flow
of X lifts to the flow of X which fixes the connection. Fur-
thermore, X is a symmetry of @ if and only if

L A=DW=dW+ [4,W]
holds (locally) on M for some g-valued function

(4.7)
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W=AX)+V, (4.8)

where V is a tensorial function and A represents  on M.
The map W is called a symmetry function of A relative
to X. It may be found as follows.
Suppose that {L (A, )} is the flow of the G-invariant vec-
tor field X on P [see Eq. (4.6)] covering the flow {4,} of X.
For values of ¢ near 0, we may use the same cross section
oin Eq. (4.4) and write

L(h,)o(x))=olh, ()T, (x)"". 4.9)

The function 7, is referred to as a transformation function of
A relative to the symmetry 4,.
Differentiation at ¢ = 0 yields the required function

W(x) = % T,(x) (evaluated at 1=0). (4.10)
An equivalent form of Eq. (4.7) is
ixF=DV, (4.11)

where V is defined in Eq. (4.8) and F is the field strength.
Thus X is a symmetry of 4 if and only if Eq. (4.11) holds for
some tensorial function V.

Let 4 be a Lie algebra of vector fields on M. A gauge
field with connection form w, is said to be homogeneous
relative to 4 if each element of the Lie algebra is a symmetry
of w. In this case, each element of the connected Lie group H
generated by 4 is a symmetry of w. Hence w is homogeneous
relative to H.

V. SPACE-TIME SYMMETRIES OF YANG~-MILLS FIELDS

In this section we discuss the symmetric properties of
Yang-Mills (YM) fields relative to infinitesimal isometries.
We express a symmetry in terms of the initial data on a
Cauchy surface for the YM fields and the isometries.

Some useful results from Moncrief? and Arms® will be
stated in terms of our notation. Specifically, the YM equa-
tion splits into evolution and constraint equations of the ini-
tial data on a compact spacelike Cauchy surface. A neces-
sary and sufficient condition for a Killing vector field to be a
symmetry of a YM field is given by Proposition 5.1 in terms
of the initial state.

We use the notation as described in Sec. II for the four-
dimensional space-time manifold “S, which has a compact
spacelike Cauchy surface M. The Lie algebra g of the gauge
group G will be assumed to have a positive definite real inner
product ¥, which is invariant under the adjoint action of G
on g.

Let *4 be a gauge field on *S and *F, the corresponding
field strength. The gauge field defines a YM field if the YM
equation

‘D*(*F)=0
is satisfied. Here *D * is formally D *, where the latter stars
are the Hodge star operators, and *D is covariant differenti-
ation with respect to ‘4.

The linearized YM equation at a solution *4 (of the YM
equation) is

‘D*4D(*a) + b%, (‘F) =0. (5.1)
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We shall often work with the Gaussian normal coordi-
nates (GNC) as described in Sec. IL. Relative to the GNC,
the metric ‘g of S has

oo = —1 and *g,, =0, for i=12, and 3.

We define a generalized electric field E on M to be the
restriction to M of the one-form — i, (*F).

Note: This electric field differs from that defined in
Arms where it is a vector density. The latter results from
defining E as the momentum conjugate to the restriction 4 of
“4 to M, in the Hamiltonian formalism. The resulting Ha-
miltonian equations then give the evolution and constraint
equations.

In our notation, the resulting equations are given as fol-
fows.

The constraint equation is given by

KAE)=0 (5.2)
where K is defined in Sec. II1. The evolution equation for E is
given by

LLE=D*F+b.(E)+TE,
where C is the restriction of — i, (*4) to M, and

TE =2i,_,(£) —trace(£)E,

where E * is the g-valued vector field associated with E via
the metric g on M, and # is the second fundamental form on
M. In GNC, I'E has

(T'E), = 2ngEk - ngEi »
where I'%; are the Christoffel symbols for “g.

The result of the Cauchy problem for YM fields then is
that for each tensorial function C, the evolution equation
defines a unique YM “4 on “S such that K(4,E) =0 on M.
A choice of C defines a choice of gauge. So, a solution of
K(A,E) =0 defines the YM field “4 uniquely up to this
choice of gauge.

Let X be a Killing vector field on *S and let Ny + X be
its restriction on M, with X' tangent to M. Define a2 map P:
T D' X D' by

®(A4,E) = (NE — iyF, — LyE — N(TE)
— [4(X),E] — D*(NF)),
where T'E is as defined before.

(5.3)

]

Proposition 5.1: The Killing vector field *X is a symme-
try of the YM field *A if and only if the corresponding (4,E)
in Ker K satisfies ®(4,E)elm JoK '*, i.e,,

(1) — NE + iyF =DV
and

(2) LyE + N(TE) + [4(X),E]1 + D*(NF)= [E,V]

for some tensorial function ¥ on M.

Note: Proposition 5.1 could also be expressed by saying
that *X is a symmetry of *4 if and only if the vector field @ on
7 o at (A4,E) is tangent to the orbit of (4,E) under &.

To prove the proposition, we need the following results.

Lemma 5.1: Suppose “X is given by X4, in GNC,
then “X ° is independent of ¢, whereas

3,(*X") = g% (3, N) .

Lemma 5.2: When restricted to M, the tensorial one-
form i, *D(i@y,*F) becomes —D*(NF)—LyE

— N(TE) — [A(X),E }, where I'E is as defined before.

Proof of Lemma 5.1; Since *X is a Killing vector field,
Killing’s equations

Xy + X, =0
hold.

Let 2 = v = O in this equation and obtain 2 J, ‘X, = 0,
using the fact that I'y, = 0 in GNC. This proves the first
result.

Now let 4 = 0 and v = k. Then the corresponding Kill-
ing’s equations are

ak (4X0) + 30(4Xk) = 2ng 4Xa .

This implies that

3 (4Xk) = 2r0k 4X ak( XO) (5.4)
Also,
3,(*X") =9,(*g**X,) = (3, *g™) “Xi +¢"(3, *X,)

If we use Eq. (5.4), the fact that ‘X, = —“X°= — N,
and also that I¥, = } “g¥(d, “g,, ), we obtain the second re-
sult.

Proof of Lemma 5.2: For any tensorial form *B and vec-
tor field Y on “S,

“D(ipyy*B) + iy, *D(*B) =Ly,
So,

“‘B+[*4(*Y),*B].

i, *D(ian,*F) = —*D(i, i¢yy *F) + L,i¢ox) *F+ [*4(5) iy, *F )
=*Divy i, *F+igL, *F+ i *F+ [*4(3)iy °F |
=*Diyi, *F+ i (L, *F+ [*A(;),°F 1) + i, x , °F
=Diy i, *F +isy, *Di, *F 4 i, 1y | *F = Liyi, *F+ [*A(*X),i, *F | + i, 5 °F .

On M, *X=Ny;+X, *4(3) = —C, and, by Lemma 5.1,
[5,°X ] = (3'N)3;, where the latter expression is grad ().
So, when restricted to M, i, *D(i,,)*F becomes

N(—L,E) —LyE+N[CE] — [A(X),E] + iyaam F.
This  last  expression, by Eg. (5.3), is
~ND*F 4 iy nF— N(TE) — LyE— [A(X),E]. The

result then follows from the fact that the first two terms add
up to — D *(NF).
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—
Proof of Proposition 5.1: Suppose that *X is a symmetry
of “4. Then, By Eq. (4.11),

4 F— 4 D( 4 V)
for some tensorial function *V.
Since ‘X = Nz + X on M, the equation on M becomes

— NE + iyF=DV (5.5)
where V is the restriction of *V to M.
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Also,
[, *F*V ] =i, *F*V]=i,(D)’(*V) =i, “D(i., *F) .
By using Lemma 5.2, we see that the last result implies that
—[EV]= —D*(NF)—LyE—~N(TE) - [A(X),E].

(5.6)

The two Eqgs. 5.5 and 5.6 imply that ®(4,E) is an element of
Im JoK '*.

Conversely, given that ®(4,E) = JoK '*(V) on M, we
extend V to a tensorial function *¥ on *S such that

i, *D(*V) =i, (i, *F) . (5.7

This result, together with what is given, implies that

i, ‘F)=*D(*V) on M.
Now, i, (*F) — “D(*¥) is a solution of the linearized YM
equation (5.1) (see, e.g., Ref. 1). This solution vanishes on
M and hence vanishes on *S provided

L, *F—*D(*M))=0, on M.

To prove the latter equation, note that on M,
L (is, *F —*D(*V))

=i,d(i, *F—*D*V) +di, i, *F—*D*V)
=i d(i,, *F—*D*V) [by Eq (57)].

But, on M,

i,d(i, *F—*D*V) =i *D(i,, *F—*D*V),
because

i, [4A,z‘.x ‘F—*D*V 1= [‘A(3) iy, ‘F—*D*V]

+ [4/1,1', (isy *F—*D*V) ]

vanishes on M.

On the other hand, we have on M (using Lemma 5.2)
that

i, “D(is, *F—*D*V) =i, *D(i, *F) — i, [‘FV ]
= —D*(NF) — LyE — N(TE)

The latter expression vanishes, by hypotheses.
Thus we have, on *S, that

iex *F="D(*V)
where ¥V is a tensorial form.

By Eq. (4.11), we see that this implies that *X is a sym-
metry of ‘4 [ ]

VI. THE SPACE OF HOMOGENEOUS YANG-MILLS
FIELDS

In this section we examine the structure of the space of
YM fields that are homogeneous relative to a Lie algebra of
Killing vector fields that are tangent to some compact space-
like Cauchy surface in the four-dimensional space-time
manifold. Our main result is Proposition 6.1, which shows
that the space is a smooth manifold near each field with only
trivial gauge symmetries. An outline of the proof of this
theorem is as follows.
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Suppose that *S'is a space-time manifold with a compact
spacelike Cauchy surface M, then the YM fields on *S are
completely determined by the elements of ¥ = Ker KX (Sec.
V). If & is an isometry of 4S that fixes M, it follows that an
element of ¢ has symmetry 4 if and only if the correspond-
ing YM field has the same symmetry. A similar result there-
fore holds also for Killing vector fields that are tangent to M.

Let (4,E) be an element of ¥ and let % be the slice at
(A4,E) described in Sec. III. There exists® a local diffeomor-
phism %, defined near (4,E) in 7 o/, which satisfies the
property that if (4,E) has only trivial gauge symmetries,
then Z maps a neighborhood of (4,E) in € n.% to an affine
ILH space. Thus € n.# is a smooth manifold near (4,E).

Suppose £ is a Lie algebra of Killing vector fields that
are tangent to M. Let 57 be the set of all elements of % that
are homogeneous relative to 4. If (4,E) lies in 5% and has
trivial gauge symmetries, then % maps a neighborhood of
(4,E) in 705 to an affine ILH space. Finally we show that
near (A,E), 77 equals ¥ (4,E) X (#n5) and so # is a
smooth manifold near (4,E).

Since each element of £ is tangent to M, it follows that
each element is independent of the ¢ coordinate of the GNC
(cf. Lemma 5.1). Thus *X in 4 may be identified with its
restriction X on M.

We shall need several lemmas.

Lemma 6.1: Suppose that (4,E)e¥ and
(4,,E,)e€ N7 have the same symmetry X of 4. Further-
more, suppose that the dimensions of their gauge symmetry
groups are the same. Then the two gauge fields have the same
set of symmetry functions relative to X.

Proof: Since (A,,E,) lies in the slice ., its gauge sym-
metry group & (4,,E,) liesin & (4,E) [the isotropy group
of (4,E) under & ]. This follows from the second property
of a slice (see the end of Sec. III). So, the Lie algebra of
& (a,E, liesin the Lie algebra of ¥, 5, . Since their dimen-
sions are the same, they are equal. Hence (4,E) and (4,,E,)
have the same set of infinitesimal gauge symmetries.

Since X is a symmetry of (4,,E,), thereis alift {L(4,)}
of the flow {4,} of X to the bundle space such that

L(ht)(AlvEl) = (AI’EI) .

Since X is a symmetry of (4,,E,), thereisalift {Z(4,)}
of the flow {A,} of X to the bundle space such that

L(hz)(ApEl) = (4,E,) .

So, the function defined by Eq. (4.9) is a transformation
function of both (4,E) and (4,,E,). Therefore, there is a
common symmetry function Wy.

Now, the lifts of A,, which fix a connection, differ by a
gauge symmetry of the connection. This implies, by Eq.
(4.9), that the corresponding transformation functions dif-
fer by a gauge symmetry. Hence the symmetry functions,
which are given by Eq. (4.10), differ by infinitesimal gauge
symmetries. The result then follows from the fact that the
latter symmetries for (4,E) and (A4,,E,) are identical. B

Let (4,E) be an element of € such that (4,E) has only
trivial gauge symmetries (i.e., those common to all fields)
and is homogeneous relative to 4. Then, for each X in 4,
Proposition 5.1 implies that
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iyF=D(Vy)
and
LyE + [A(X),E] = [EVx],
for some tensorial function ¥V (since N =0).
This result can be written as
LyA =DWy=dWy + [4,Wy]
and
LyE=[EW,],
where Wy = A(X) + Vy is the symmetry function [cf. Eq.
4.8)].

If we extend L, to ordered pairs componentwise, then
the two equations may be combined to give

Ly(E,~A4)=K""(Wy). - (6.1)

Let {L(h,)}againbealift of the flow {#,} of X that fixes
(A4,E). Define the linear operator ay by

ay(B) =5;(L(h,)B) (evaluated at t=0), (6.2)

where B is any tensorial form on M. Extend a, to ordered
pairs componentwise. The operator ay is also given by
ay(B)=Lx(B) + [Wx,B]. (6.3)

The latter follows from the fact that Eqgs. (4.2) and (4.9)
lead to

L(h,)B=Ad T,(h*B) (for small values of 7).

(6.4)
Now, differentiation of the terms in Eqs. (6.4) atz = 0, gives
the required result.
Let us define Ker « as follows:
Kera = {(a,e)eP' X D" ay(a) =ay(e) =0,
for all X in 4}.
Lemma 62: InF ={(4+aE+e)ESnE:

(a,e)eKer a}, where Ker a is as defined above.

Proof: Let (A,E) = (A + a.E + e)e#n%. Then Eq.
(6.1) yields

Ly(E,—A)=K"*(Wy) +axle,—a), (6.5)
where K '* is the adjoint of the derivative of X at (Z,E' ).

Suppose that (a,e)eKer a. Then ay (e, —a) = (0,0)
and so Eq. (6.5) implies that X is a symmetry of (4,E). This
is true for all X in £ and so (4,E)e“n¥’.
_ Conversely, suppose that (4,E)e.#n¥ and Xe/. Let
W be a symmetry function of (4,E) relative to X. Then
Ly(E,—A)=K'"*(Wy) and so

ay(e, —a) =K "*( WX - Wy).
There is a one-to-one correspondence between the infinitesi-
mal gauge symmetries of the YM field corresponding to
(4,E) and the elements of Ker K '* (see, e.g., Ref. 1). Since
(4,E) has only trivial gauge symmetries,
Ker K '"*CKer K '*, But Ker K '*C Ker K '* follows from
an argument similar to that in the proof of Lemma 6.1 (the
first part). Hence,

KerK'*=Ker K '*. (6.6)

By Lemma 6.1, the two fields have the same set of symmetry
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functions. Again, by the argument at the end of the proof of
Lemma 6.1, this means that W, — Wy lies in Ker K ** and
soay(e, —a) = (0,0).

Since the latter is true for each Xin 4, (a,e)eKer a. This
completes the proof.

We now define the operator Z as follows: Since X '* is
elliptic, there is an orthogonal splitting

D°=ImK'oKerK'* 6.7)

{cf. Remark after Eq. (3.3)]. The linear map K 'K ’* is in-
vertible as a map from Im K’ into itself. Let 7 be its inverse
on Im K’, and extend Z to be zero on Ker K **.

Lemma 6.3: The operator ay [Egs. (6.2) and (6.3)]
commutes with KX’ and with %. Moreover,

ayb*a=b*aya —braye.

Proof: Let h be an isometry of M. Suppose /4 lifts to an
automorphism L (/) of the principal bundle P. A direct com-
putation shows that

D,(B)=L(h)D(L(h)"'B),
where D, is covariant differentiation relative to L(#)A4 and
B is any tensorial form.
Let ¥ be a tensorial function. Then we have the follow-
ing result:
(DHL(ME)V) =(L(h)E,D,V)
= (L(R)E,L(R)D (L(h)™'V))
= (E,D(L(h)"'V)) (by Prop. 4.1)
=(D*EL(h)~'V)
= (L(h)D*E,V).

Hence,
K(L(W)A,L(h)E)= —D¥(L(h)E)
= —L(h)D*E=L(h)K(A,E),
i.e., L(h) commutes with X. This implies that
K'(L(h)a,L(h)e)=L(h)K'(a,e)
whenever L(h)(4,E) = (A4,E) and (a,e) liesin Z' X .

In particular, let {Z (A, )} be alift of the flow {A,} of the
vector field X, which fixes (4,E). Then

K'(L(h,)a,L(h)e)=L(h)K (ase) .
Differentiation relative to r at O yields the result that
K'ay(a.e) =axK'(ae),

i.e., K’ commutes with a,. This implies also that @, maps
Im K’ into itself.

Now, by using the inner product (, ), it is easy to show
that X * also commutes with . Therefore a, commutes
with A =K'K '*.

Let A% = Z#ZA = 4 be the orthogonal projection of Z°
onto Im X' [see Eq. (6.7)]. Then

Moshe Molelekoa 752



Ray(a) = Zray(a) (since # vanishes on Ker K ’'*)

= Rays(a) (since ay commutes with X'

and K'*)
=RayAZ (a)
= RAay R (a) =payR(a) =ay/R(a)
=ay#(a) (since InZCImK').
So, ay commutes with Z.
Lastly, if @ and e are tensorial one-forms on M, then, in

local coordinates, b *a can be shown to equal [a,,¢* ]. So, in
local coordinates,

aybta=Ly [ak!ek ]+ [Wx [ax,€1]
= [(Lx@)s,e* ] + [ar,(Lxe)*]
+ [ Wx.a 1651+ [ax, [ Wx.e*]1.
Now observe that
(Lya), =Ly (a,) + (3, X")a; and
= (Lye)*Ly(e*) — (8, X"%)e; .
From this we deduce that

axb®a=[(aya),.e* ]+ [a,(ayxe)”]
because the other terms cancel out. ]

Proposition 6.1: Suppose that (4,E) lies in € and has
only trivial gauge symmetries. Furthermore, suppose that
(4,E) is homogeneous relative to 4. Then the space 7, of
YM fields that are homogeneous relative to 4 is a smooth
manifold near (4,E).

Proof: Since .7 is a slice for the action of ¥ on J &,

TA =%UAE)XS
near (4,E), where 9 (A,E) is the orbit of (4,E) under &.
Hence,

X =Y (A,E)X ()

near (4,E).

Since ¥ (A,E) is a smooth manifold, it suffices to show
that %’ is a smooth manifold near (4,E).

From Lemma 6.2 follows that

¥ = {(4 + a,E + e)enE: (ae)eKera}.

Let #A+aE+e)=(A+aE+e)+K'*RAb*(a),
where 7 is as defined before Lemma 6.3.

Since b *(a) = [a,¢* ]in local coordinates, it follows
that the derivative of # at (4,E) is the identity map. This
implies that & is a local diffeomorphism at (4,E) in 7 .

From Lemma 6.3, it follows that % maps (4,F)

+ Ker a into itself. Also, from Ref. 3, we note that # maps
Fn€ into (4,E) + Ker K'nKer K 'oJ and also maps a
neighborhood of (4,E) in #n% diffeomorphically onto an
open subset of (4,E) + Ker K 'nKer K ‘oJ. So,

BT )
=B (INSNE) =B (EnSn{(4,E) + Kera})

C(4,E) + Ker K'nKer K 'oJnKer a .

Since Z is a local diffeomorphism, it follows that #
maps a neighborhood of (4,E) in #n.5 diffeomorphically
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onto an open subset of the affine ILH space (4,E)
+ Ker K 'nKer K ‘oJrKer a. Hence the result follows. H

Note: From the proof of this proposition, it is clear that
the same result holds if the condition about trivial gauge
symmetries is dropped and 7 is replaced by homogeneous
YM fields that have the same dimension for their gauge sym-
metry groups, so that Eq. (6.6) may hold.

Vil. GENERALIZATIONS

Let “S be a nonflat space-time manifold that contains a
compact spacelike Cauchy surface of constant mean curva-
ture. Marsden and Tipler'* have shown that, under certain
generic conditions, S has a foliation by a family of Cauchy
surfaces of distinct constant mean curvatures. This result
implies that the Killing vector fields, if any, are tangent to
the Cauchy surface. If “S is an Einstein space-time, the latter
result also holds. Thus our results apply to a large class of
space-time manifolds. A major class of examples, which do
not satisfy the generic conditions stated above, are the static
space-times. The latter contain Killing vector fields that are
timelike, and hence are not of the type considered here.

The results in this paper form part of a Ph.D. disserta-
tion.® Some generalization to the case of static space-times is
included in the dissertation. Briefly, the Lie algebra /£ is al-
lowed to include the unit normal 4. This algebra is shown to
be spanned by y and vector fields that are tangent to the
Cauchy surface. The problem then reduces to that of de-
scribing the space of YM fields on M, which are homogen-
eous relative to the Killing vector fields of M. Proposition 6.1
then holds in this case provided the space of YM fields itself
has a tangent space at 4. The latter may be expressed by
saying that the space is linearization stable at 4 (a concept
that is used by Marsden and others in the study of the struc-
ture of the space-time manifold).

This extension does not exhaust all space-times that are
usually considered in physics, and therefore the general case
remains to be examined. Also, the structure of the space of
homogeneous YM fields has been determined only near
those fields that have only the trivial gauge symmetries.
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Ermakov and non-Ermakov systems in quantum dissipative models
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Via the hydrodynamical formulation of quantum mechanics, a unified protocol to treat the
quantum time-dependent harmonic oscillator with friction is presented, described by two
different models: an explicitly time-dependent, linear Schrodinger equation (Caldirola—Kanai
model) and a logarithmic nonlinear Schrodinger equation (Kostin model). For the former
model, an Ermakov system that makes it possible to obtain an invariant of Ermakov-Lewis-type
is derived. For the latter model, a non-Ermakov system is derived instead and it is shown that
neither an exact nor an approximate invariant of Ermakov--Lewis-type exists.

I. INTRODUCTION

Since Lewis’ rediscovery of an exact invariant of the
time-dependent harmonic oscillator,’ the theory of invar-
iants (constants of motion or first integrals) has become a
center of intense research with diversified applications in
classical and quantum physics.>'? Essentially, Lewis
showed that a conserved quantity for the time-dependent
harmonic oscillator is given by

I=}[(ga —aq)* + (¢/a)*], (1.1)
where g and « satisfy, respectively,

g+’ ()g=0 (1.2)
and

&+ o*(Da=1/a. (1.3)

In fact, this problem traces back to Ermakov'® who derived
(1.1) (the Ermakov-Lewis invariant) by eliminating »*(¢)
between (1.2) and (1.3) (the Ermakov system).

Thus far, the solution of the so-called Ermakov-Lewis
problem and its generalizations has been found, mainly, by
the following four methods'*'¢: (1) Kruskal’s method of
(exact) adiabatic invariants,'” (2) Leach’s method of time-
dependent canonical transformations,'®'® (3) Noether’s
theorem as developed by Katzin and Levine,'® Lutzky,?® and
Ray and Reid,?! and (4) the Lie theory of extended groups
as presented by Leach?” and Gauthier.’ These methods have
also been applied in the search of invariants for dissipative
systems with an underlying explicitly time-dependent La-
grangian®>-?5: this type of Lagrangian model can be inter-
preted as a special example for a scalar in a Riemannian
curvated configuration space where the metric describes a
friction force?’° or, alternatively, as an example of a system
with a time-varying mass*®*? (the Caldirola~Kanai mod-
el).

Recently, there has been an increasing number of papers
trying to remedy the conceptual difficulties of this model.
Their main argument is that a physically reasonable descrip-
tion of quantum dissipative systems by the Caldirola-Kanai
model is attainable by an inclusion of a stochastic external
force, representing the interaction of the particle with a
chaotic bath?’~*? or by considering times shorter than the
inverse friction constant 1/v (see Ref. 39). Furthermore, it
has been shown that by a proper rescaling transformation
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one can reduce the Caldirola-Kanai Lagrangian/Hamilton-
ian into another without dissipation.'"?>*® This, then, may
justify a priori the existence of an exact or approximate in-
variant for classical or quantum dissipative systems de-
scribed by the Caldirola—Kanai model.?**’

In order to avoid some of the above-mentioned ambigu-
ities, quantum mechanical treatment of dissipative processes
also has been introduced through nonlinear Schrédinger
equations. Among them, the Kostin nonlinear Schrédinger
equation was the first to be discovered,** and subsequently
derived, within the realm of stochastic mechanics by Skager-
stam,*® Yasue,*¢ and the author.*” Much work has been built
upon this nonlinear Schrddinger equation: We point out the
works of Weiner and Forman,*® Briill and Lange,*® Yasue,°
Griffin and Kan®' for the compelling physical reasons that
motivate the study of this model. In fact, Caldeira and Leg-
gett>* have given a possible justification for the use of nonlin-
ear wave equations (such as the Kostin nonlinear Schré-
dinger equation) for the description of nonconservative sys-
tems, based on their finding that damping tends to destroy
interference effects of two Gaussian wave packets in a har-
monic potential.

In light of the above discussion, one important question
motivates our work here: how could one treat phenomeno-
logically different quantum dissipative models (such as the
quantized Caldirola—Kanai and the Kostin models), and in-
vestigate the possibility of finding (or not) Ermakov—Lewis-
type invariants all in the same scheme?

In this paper we answer this question from a new per-
spective by studying the one-degree-of-freedom quantum
dissipative time-dependent harmonic oscillator using the hy-
drodynamical formulation of quantum mechanics, which
has proven to be enormously advantageous vis @ vis other
formulations.>*-%¢

In Sec. I1, we study the damped time-dependent har-
monic oscillator described by the Caldirola~-Kanai model
and derive an Ermakov pair of equations (Ermakov sys-
tem), which generates a corresponding Ermakov-Lewis-
type invariant. In Sec. III, by proceeding in the same
scheme, we show that this feature is not shared by the Kostin
model: it comprises, conversely, a non-Ermakov pair of
equations (non-Ermakov system), therefore not producing
either an exact or an approximate Ermakov-Lewis-type in-
variant.
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Il. AN ERMAKOV SYSTEM (IN THE CALDIROLA~KANAI
MODEL)

We begin with the quantum time-dependent harmonic
oscillator with friction described by the explicitly time-de-
pendent Schrodinger equation (Caldirola-Kanai mod-

el ) 28-39

> Y _ 21/! 200y 42
if E (x,t) = 2m e~ ax 2 — e"ma* (1) x*Y(x,t) ,

2.1)

where ¢¥(x,t), v, and @(¢) are the wave function, constant
friction coefficient, and time-dependent harmonic oscillator
frequency, respectively.

To obtain the quantum fluid dynamics description of
(2.1), we write the wave function ¥(x,?) in the form

P(x,t) = d(x,t)exp[iS(x,1)] . 2.2)

After substitution of (2.2) into (2.1) we obtain from its
real and imaginary parts

v b 1 9¥,

@ = Hx= ———2_ 2.3

at+va +w+ o’ ()x = - ax (2.3)
and

dp 9 v 2.4)

3¢ + ™ (p )= (
where p=¢®* is the quantum fluid density,

v=(#i/m)e " 3S /dx is the quantum fluid velocity, and
Vo= — (#/2m)e= p ~12(3%/3x%) p"/* is the quan-
tum potential.

An essential unique feature of the quantum potential is
that the force arising from it is unlike a mechanical force of a
wave pushing on a particle with a pressure proportional to
the wave intensity. So it follows that the expectation value of
the quantum force vanishes for all times, ie., (3V,/
dx) = 0 (see Ref. 43). Further if we prepare the fluid parti-
cle initially in a Gaussian wave packet centered at x =0,

p (x,0) = [75(0)] ~ "2 exp[ — x*/0(0)], and any initial
velocity vy, we may split (2.3) into
P 0P 4t o= k(D) (x—g) 2.5)
at ox
and
a ﬁze—zw —1)2 azpl/2]
—_ —_ —_— =k t —_ R 2.6
= 2 ) (x—g) (2.6)

where ¢(t) is the expectation (classical) value of x
[{x) = q(£)] that will be determined in coricomitance with
k(z).

Integrating (2.6) (assuming that p vanishes for |x|— oo
at any time), one obtains

pix, 1) = [mo()]" 2 exp[ — (x — g)¥/0(D)],

(2.7a)

where

A()=He™ " /mk(t) . (2.7b)

Next, substituting (2.7) into (2.4) and integrating, we
find

v(x,1) = (6/20) (x —q) +4¢, (2.8)

756 J. Math. Phys., Vol. 27, No. 3, March 1986

where the constant of integration must be zero since p van-
ishes for |x|—co.
Inserting (2.8) into (2.5) we have our main result

+ [§+v§ + 0*(1)g] =0 (2.9)
This equation is identically satisfied if
ad+va+o*Ha=e""/a® (2.10a)

and
§+v§+a’(g=0, (2.10b)

where we have made o=(#/m)a’.
By eliminating w?(¢) between (2.10a) and (2.10b) and
after some manipulations we find*>-2

1=0, (2.11a)
where
I=y{e [(ga — ag)?] + (¢/@)?} (2.11b)

is an Ermakov-Lewis-type invariant. So, (2.10a) and
(2.10b) constitute an Ermakov system.

1ll. ANON-ERMAKOV SYSTEM (IN THE KOSTIN MODEL)

Now, we consider the quantum time-dependent har-
monic oscillator with friction described by the nonlinear
Schrédinger equation (Kostin model)*5!

o Oy #w” AN

= (x,8) = ——

o B0 T

fv ¢(x, ) ]
21' Yo,
where the nonlinear term (hv/21) ln(lﬁ/t/"') accounts for
the dissipation.

To obtain the quantum fluid dynamics description of
(3.1), we proceed as in Sec. I, we express the wave function
¥(x, t) asin (2.2) and obtain

+ [—;— mo*()x?

B G.1)

gv—+vﬂ+vv+a)(t).7c 1 Ve 3.2)
at ox m odx

and
% 9 = 3
at + ax (pv) 33

where now p=¢?, v=(#/m) (35 /dx), and V_,= — (#/
2m) p-—l/Z(a 2/ax2) p1/2.

By following closely the same scheme developed in Sec.
II, we split (3.2) into

v )

5;+v3—+vv+w2(t)x—k(t) (x—q) (3.4)
and
. —1/2 a 1/2
e e =k -0, @)
Equation (3.5) yields
p(x, 1) = [ro()] ™ exp| — (x — g)*/a(1)],
(3.6a)
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where
A ) =H/m?*k(t) . (3.6b)
The fluid-particle velocity v(x, ¢) is obtained by substi-
tuting (3.6) into (3.3) and integrating: we obtain (2.8) with

o(t) given by (3.6b).
Analogously, we have the main result

+ [+ v§ + 0*(£)q] =0. (3.7)
This equation is identically satisfied if

& + va + 0*()a = 1/ (3.82)
and

§+vi+a’()g=0, (3.8b)

where o=(#/m)a>
By eliminating »*(¢) between (3.8a) and (3.8b) and
after some manipulations we find

I=ve* (¢/a)?, (3.92)
where
I=}e&" [(§a —aq)’ + (¢/a)?]. (3.9b)

So, (3.8a) and (3.8b) constitute a non-Ermakov system,
since no Ermakov-Lewis-type invariant can be found (ex-
cept in the trivial case as v = 0).”!

IV. CONCLUSIONS

In summary, the relevant advantage of our method vis &
vis the previously mentioned methods is that we can deal
with linear quantum systems as well as nonlinear quantum
systems within the same scheme (the hydrodynamical for-
mulation of quantum mechanics). This makes it possible to
compare and distinguish, in a clear fashion, what we called
Ermakov and non-Ermakov systems, based on whether or
not one can find a general invariant in the form of (1.1).
Moreover, the protocol developed here can be used toward a
deeper understanding of the role of the theory of invariants
in conjunction with other types of nonlinear wave mechani-
cal theories.”~7° It poses some new perspectives and an alter-
native route that suggests further research and generaliza-
tions. Work in this direction is in progess and will be
published in a forthcoming paper.
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strict sense of Ermakov, although a trivial mathematical (non-Ermakov—
Lewis) invariant quantity J* =1I—vf‘e® (¢(s)/a(s))*ds can be
formed [with 7 given by Eq. (3.9b) ]. We may substantiate further on this
remark, bearing in mind the very importance of a physical (Ermakov—
Lewis) invariant; its use as an artifact to construct an exact solution for
the underlying Schrodinger equation. In other words, the presence of a
physical (Ermakov—Lewis) invariant is a one-way link with a sure exact
solution (the reciprocal may not necessarily be true). Thus, this comes
about to corroborate, a fortiori, the already known facts in the literature:
(1) that the Caldirola—Kanai model is exactly solvable (see Refs. 27-42),
while (2) the Kostin model does not yield an exact solution (sec Refs. 27,
48, 51, and 67).
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A generalization of Shannon’s amount of information into quantum measurements of continuous
observables is introduced. A necessary and sufficient condition for measuring processes to have a
non-negative amount of information is obtained. This resolves Groenewold’s conjecture
completely including the case of measurements of continuous observables. As an application the
approximate position measuring process considered by von Neumann and later by Davies is

shown to have a non-negative amount of information.

I. INTRODUCTION

A pertinent approach to quantum measurements should
have at least two aspects. One is the statistical aspect that
describes statistics of the results of measurements. The other
is the dynamical aspect that describes the dynamics of the
processes of measurements. The conventional approach due
to von Neumann' harmonizes these two aspects in a very
simple way. The statistical formula (E) (see Ref. 1, p. 295)
and the repeatability hypothesis (M) (see Ref. 1, p. 335)
describe the statistics of the measurements completely. On
the other hand, it is proved that measurements with these
statistical properties can be described by a quantum-me-
chanical interaction between the observed system and the
apparatus (see Ref. 1, Chap. VI). However, this beautiful
theory can be applied only to measurements of discrete ob-
servables. For measurements of continuous observables, von
Neumann proposes the approximation with step-function
operators having a discrete spectrum.

There are several reasons for going further beyond von
Neumann’s theory; some of them other than the discontent
of von Neumann himself (see Ref. 1, p. 223) are as follows.

(1) As pointed out by Wigner,” if there is an additive
conservation law throughout the process of a measurement
then the measurement of the quantity that does not com-
mute with the conserved quantity cannot satisfy the repeata-
bility hypothesis (see Refs. 3 and 4 for general proofs).

(2) Some results on approximate simultaneous mea-
surements of noncommuting observables strongly demand
new statistics for measurements of continuous observables
(see Refs. 5 and 6).

(3) von Neumann’s device of approximating contin-
uous observables with discrete observables destroys the sym-
metry that continuous observables have naturally (see Ref.
7, p. 66).

In order to provide a basis of general considerations for
the above nonidealized measurements, simultaneous mea-
surements and covariant measurements, we have started*
with an axiomatic approach. In our previous work,**'° we
have discussed the following problems.

(1) When is the statistical description consistent with
. the dynamical description?

(2) How does the dynamical description determine the
state change of the observed system caused by the measure-
ment?
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(3) How is the conditional expectation of the statistics
of quantum measurements related to the state change?

In order to resolve the above problems, we have intro-
duced the mathematical notion of a measuring process,
which is a mathematical generalization of the dynamical de-

- scription of quantum measurement. It is proved that this

notion contains enough data to determine the state change
caused by the measurement. On the other hand, a mathemat-
ical generalization of the statistical description of quantum
measurement was previously introduced by Davies—Lew-
is,"! which is referred to as an instrument. Then our solu-
tions are based on the following result (see Ref. 4, Theorem
5.1): The statistical description is consistent with the dyna-
mical description if and only if it is described by a completely
positive instrument.

In the present paper, we shall introduce an information-
theoretical aspect to our general theory of quantum mea-
surements besides the above two aspects. Such a considera-
tion was first done by Groenewold!? for discrete idealized
measurements.

In information theory, the information obtained by ob-
servation of a system is measured by the change of entropy in
the observed system and it is proved that the average of a
posteriori entropy is not larger than a priori entropy.™ For
the conventional description of quantum measurement due
to von Neumann' and Luders, ' the corresponding quantum
mechanical analog of the above inequality is conjectured by
Groenewold'? and proved by Lindblad.'® Suppose that a dis-
crete observable X = 2, x; P; is measured by a conventional
repeatable measuring process at the initial state p. Then we
get the a posteriori state p, = (1/Tr[P; p])P, pP; with
probability p; = Tr [ P; p] for any measured value x; . In this
case, the a priori entropy is S[ p] = — Tr[ plogp] and
the a posteriori entropy given the result x; is S[ p;]

= — Tr[ p; log p;]. Then the Groenewold-Lindblad ine-
quality is as follows:

S[pl — > pS[ p:i]>0.

The left-hand side of the above inequality is just a quantum-
mechanical analog of the amount of information introduced
by Shannon in information theory. Thus conventional repea-
table quantum measurements can be well interpreted as an
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information transmission from the observed system to the
apparatus.

In the present paper, we shall consider the generaliza-
tion of the above inequality to our general quantum mea-
surements. It is natural to expect that every physically rel-
evant description of quantum measurement admits the
above information-theoretical interpretation, that is, a gen-
eralized Groenewold-Lindblad inequality holds. However,
since our most general description of quantum measurement
is obtained axiomatically from the sole requirement of con-
sistency of statistics and dynamics, it is not a priori true to
hold the required inequality. Thus our problem is the follow-
ing: What condition characterizes the general description of
quantum measuring processes for which the average amount
of information is always non-negative? In the following sec-
tions, we shall discuss and resolve the above problem.

In Sec. II, we provide necessary preliminaries for mea-
suring processes and state changes. In Sec. ITI, we introduce
a quantum-mechanical generalization of Shannon’s amount
of information. In Sec. IV, we obtain a necessary and suffi-
cient condition for the generalized Groenewold-Lindblad
inequality. Our main result can be stated using the terminol-
ogy introduced in our previous work*® as follows: We say
that a measuring process is quasicomplete if when an a priori
state is pure then almost all a posteriori states are pure. Then
the generalized Groenewold-Lindblad inequality holds for
every a priori state if and only if the measuring process is
quasicomplete. In Sec. V this result will be applied to show
that von Neumann’s model of approximate position mea-
surement (see Ref. 1, pp. 442-445) always satisfies the gen-
eralized Groenewold-Lindblad inequality.

Il. MEASURING PROCESSES AND STATE CHANGES

A quantum system is described by a Hilbert space 57°.
Denote the algebra of all bounded operators on g by
& (5°) and the algebra of all trace class operators on #° by
T (). A state is described by a density operator, i.e., a
positive trace one operator on #°. A semiobservable X with
value space (A, Z (A)) s a positive operator valued measure
X: B (A)—.Z () on a Borel space (A, % (A)) such that
X(A) = 1. A semiobservable is called an observable if it is a
spectral measure, i.e., projection valued.

Consider the following description of a measuring pro-
cess of a quantum system. The observed system § and the
apparatus M are described by Hilbert spaces 5% and %,
respectively. A measurement is carried out by an interaction
during a finite time interval from time O to ¢, whose time
evolution is given by a unitary operator U = exp( — itH) on
X ® ¥, where H is the Hamiltonian of the system S + M.
Before the interaction, Sis in the (unknown) state p and M is
in the (known) state o, so that the system S + Misinp ® 0.
Thus by the interaction the state of S + M changes into
U(p®0o)U*. Let X be the semiobservable in S to be mea-
sured and X be the observable in M to show the value of X.
Then the probability distribution Prob [X e dx|p] of the
value of X at time O should coincide with the probability
distribution Prob [X € dx|U( p ® o) U*] of X at time ¢, that
is, we have
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Tr[X(dx)p] = Tr[(1e X(dx))U(pea)U*]. (2.1)

Equation (2.1) is our sole requirement for the above
interaction to be a measurement of X in the initial state p. We
shall refer to any four-tuple (#",X,0,U ) consisting of a Hil-
bert space %", an observable X in %" with value space
(AsZ (A)), a density operator o on 7, and a unitary opera-
tor Uon #° ® ¥ satisfying Eq. (2.1) for any density opera-
tor p on ¥ as a measuring process of a semiobservable X in
the observed system S (cf. Ref. 4, Definition 3.1).

Denote by CP(7 (7)) the space of all completely posi-
tive maps on .7 (#°). A CP(J (5°))-valued map # on
2 (A) is called a CP instrument if it satisfies the following
conditions (I1) and (I12).

(I1) For each disjoint sequence {B,} in #Z (A),

F(B) =3 F(B),
i i

where the sum is convergent in the strong operator topology
of CP (7 ().

(I2) For each density operator on %, Tr [# (A)p]
=Tr[p].
The dual #(B)* of #(B) is defined by the relation
Tr[(F (B)*a)p] = Trla(.# (B)p)], for all Be H(A),
ac L (), andp e T ().

As shown in Ref. 4, every measuring process
(K X,0,U) determines a unique CP instrument # by the
relation

FB)p=Ex[{16X(B)U(pec)U*],

forall Be % (A) andp € T (5°), where E 5 stands for the
partial trace over %". In this case, we have

J(B)*1 = X(B), 2.3)

for all Be % (A). The CP instrument # determines the
state change caused by this measuring process, as follows.
For any B € # (A), let S be the subensemble of the mea-
sured system S in which the outcome of the measurement is
in B and let p; be the state of Sp at the instant after this
measurement. Then, we have

ps = (1/Tr[F (B)p])}f (B)p; (2.4)
for all Be % (A) with Tr [# (B)p] #0. For any x € A, let
S, be the subensemble of the measured system §'in which the
outcome of the measurement is x and letp, be the state of S,
at the instant after this measurement. Then by our statistical
interpretation, we should impose the following requirements
(A1) and (A2) on the family { p,; x € A}.

(A1) The function x — p, is strongly & (A)-measura-
ble from A into the space of all density operators on #°.

(2.2)

(A2) fp,, Tr{# (dx)p] = £ (B)p,
B

where the integral is a Bochner integral.

We call any family { p,;x € A} satisfying conditions
(Al) and (A2) afamily of g posteriori states with respect to
the a priori state p. By Ref. 9, Theorem 4.5, a family of a
posteriori states always exists and is unique in the following
sense: If { p2;x € A} is another family of a posteriori states
with respect to the a priori state p, then p;, = p, for almost all
x € A with respect to Tr[.# (dx)p].
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For the detailed discussion, we shall refer the reader to
Refs. 4 and 8-10.

Ill. AMOUNT OF INFORMATION OBTAINED BY
MEASUREMENTS

From an information-theoretical point of view, a mea-
surement gives us some information about the observed sys-
tem. Since the state of the system is affected by our knowl-
edge about the system, the information obtained by the
measurement will be measured by the entropy change corre-
sponding to the state change caused by the measurement.

Let X be a semiobservable on a Hilbert space # with
value space (A, % (A)). Now, assume that a measurement of
Xis carried out in the initial state p of the observed system by
a measuring process M = (%" X,0,U ). Let .# be the corre-
sponding CP instrument. We call p the a priori state. Let
{ px;x € A} be a family of a posteriori states with respect to
the a priori state p. Then the measurement changes the state
from the a priori state p to the a postertorz states o, , when the
result X = x is obtained. The entropy of the a priori state pis

S[pl= —Tr[plogpl, (3.1)
which we call the a priori entropy. The entropy of the a pos-

teriori state p, is

S[px]= —Tr[ p.logp.], (3.2)

which we call the a posteriori entropy. Thus in this case the
information of this measurement is given by the following
entropy change I[ p,M|x]:

I[ p,M|x] =S[ p] —S[ p: ], (3.3)
which we call the conditional amount of information given
X = x. Since the result X¥ = x of measurement is probabilis-
tic event distributed by the probability Prob [X € dx| p], our
expected amount I[ p,M] of information of this measure-
ment is the average of the conditional amount of informa-
tion, i.e.,

I[ p,M] =LI[p,M|x] Prob [X e dx| p]

=S p] ——LS[ p] Tr [F@xipl,  (34)

which we call the amount of information of the measuring
process M with a priori state p. Since the family { p, ;x € A}
of a posteriori states is determined uniquely up to u-almost
everywhere, where u(dx) = Tr[.# (dx)p], the amount of
information I[ p,M] does not depend on particular choice of
the family of a posteriori states with respect to p.

Now we can state our generalization of the
Groenewold-Lindblad inequality as follows.

(GL) I[p,M]>0, for any a priori state p with
S[pl <.

If the measuring process M is the conventional repeata-
ble measurement of a discrete observable X = 2, x; P,. Then
J (B)p = 2{P; pP,;x; € B}. In this case, statement (GL) is
proved in Ref. 15, Theorem 2. In the next section we shall
discuss when a given measuring process satisfies condition
(GL).

In the rest of this section, we shall introduce another
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information theoretical quantity motivated by more classi-
cal interpretation. Let p = 2,w; p; be the orthogonal de-
composition of p into pure states p; . Let v (dx|i) be a transi-
tion probability defined by

v(dx|i) = Tr[X(dx)p,]- (3.5)

Then the measurement of X can be interpreted as an infor-
mation channel with input space {i = 1,2, -~ } and output
space (A, (A)) in the a priori distribution {w, } such that if
the input parameter is / then the output distribution is
v(dx|i). As well as every information channel, we can define
Shannon’s information I[v,{w; }] for this information chan-
nel as follows:

I[V’{wi}] = z J; w;v(dx|i) log {_V(d_xl;)__

. .6
2w, v(dx|i) ] (36)

Let u(dx) = Tr[X(dx)p] and v, (dx) = v(dx|i). Then we
have
I[v,{w,}] =Zw,-c-S[v,~|,u], 3.7

where c-S[v; |u] stands for the classical relative entropy of
v; with respect to u, i.e.,

dv,
c-S[vilu] = J; v;(dx) log (;’L‘—)(X).

Since the quantity I[v,{w; }] depends only on X and p, we
shall refer to it as the classical amount of information of the
measurement of X with a priori state p and write

c-I[ pX] =1I[v,{w;}], i,
eIl pX 1= w, eS[Te[X( - )p,]| TrX(- o],

(3.9)
where p = 2, w; p; is the orthogonal decomposition into
pure states. By the classical theorem (see Ref. 16, p. 11), we
have

C’I[ P »X ] > 0}

for all semiobservable X and states p.

(3.8)

(3.10)

IV. GENERALIZED GROENEWOLD-LINDBLAD
INEQUALITY

In what follows, we shall fix a measuring process
= (¥ X,0,U) of a semiobservable X on a Hilbert space
# with value space (A,# (A)) and the corresponding CP
instrument £, A family {p,;x € A} of a posteriori states
with respect to an a priori state p is called pure if p,, is a pure
state for almost all x € A with respect to Tr[.# (dx)p]. A
measuring process M is called quasicomplete if it satisfies the
following condition.
(QC) For any pure state p, a family { p,;x € A} of a
posteriori states with respect to p is pure.
A measuring process M is called complete if a family of a
posteriori states is pure for any a priori states. To justify the
terminology, consider the conventional repeatable measur-
ing process of a discrete observable X = 3, x, P;. In this case,
the corresponding CP instrument .# is of the form % (B)p
= 2{P, pP,;x; € B}. Thus the a posteriori state p, for
X =x;, written as p(x;), is of the form p(x;) = (1/
Tr[P; p])P; pP;. Then it is easy to see that this measuring
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process is quasicomplete and it is complete if and only if the
spectrum of X is simple, i.e., every P, is one dimensional.

Theorem 1: If the measuring process M is quasicomplete
then the amount of information is not less than the classical
amount of information, i.e.,

I[ pM]>c-I[ pX], 4.1)
for any a priori state p with S[ p] < .
Proof: Let . (dx) = Tr [# (dx)p]. Letp = Z,w, p, be

the orthogonal decomposition of p into pure states. Then we
have

S[pl=— zwi log w;.

Let v;(dx) be the probability measure defined by
v;(dx) =Tr[# (dx)p;]. Then v,(dx)="Tr[X(dx)p,]
and v, <u for alli. Let { p; (x);x € A} be a family of a poster-
iori states with respect top, . By the assumption p, (x) is pure
for p-almost all x and hence we can assume that p; (x) is
pure for all x € A without any loss of generality. For any
Be % (A), we have

J (B = 2 w7 (B)p,
=3 w f pi(x)Tr[F (dx)p;]
i B
= 2 w; fp,. (x)v;(dx)

= Z w; fp, (x)( )(x),u(dx)

_f [E ( )(x)P:(x)]#(dx)

Thus p, = Z,w;(dv,/dp)(x)p,(x) defines a family
{ px;x € A} of a posteriori states with respect to p. Let f; (x)

= w, (dv,/du)(x) for all i. By Ref. 15, Corollary, p. 247, we
have, for all x € A,

S[p:]= S[;mx)p.- (x)]
<2 S[fi (x)p:(x)]
= — Z Tr[f; (x)p; (x) log (fi (x)p; (x))]
= -Zf,(x) log f; (x)
_ -Zw:( )(x) logw( :)(x)
— _2( )(x)w, log w,

dv, dv,)
- {— log | — .
;w,(dﬂ)(x) og(dﬂ (x)

Thus we have
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J S[ px Ju(dx)
A
—Zw, log w,
~Sw fv(dx) lo (ﬂ'i)(x)
; " ¢ du
=S[pl — F w,eS[vu]-
i

Consequently, if S[ p] < o then

Sl p] —LS[px]Tr[.f(dx)p]> Z w,c-S[v;ju],

whence,

I[ p,M]3cI[ pX]. Q.E.D.

Theorem 2: A measuring process M is quasicomplete if
and only if the amount of information I[ p,M] is non-nega-
tive for any a priori state p with S{ p] < .

Proof: Suppose that a given measuring process M satis-
fies I[ p,M1>0 for any a priori state p with finite entropy.
Suppose that p is a pure state. Then S[ p] = 0 and hence

—f S[ px 1 Tr[# (dx)p] = I[ p,M]>0.

Since S[ p, 150, we have S[ p, ] =0 for almost all xe A
w1th respect to Tr[# (dx)p]. Thus the family of a posteriori
state { p, ;x € A} with respect top is pure, so that M is quasi-
complete. The converse part of the assertion follows from
Theorem 1 and inequality (3.10). Q.E.D.

Therefore, we have proved that a necessary and suffi-
cient condition for the generalized Groenewold-Lindblad
inequality (GL) is the quasicompleteness (QC) of the mea-
suring process.

V. VON NEUMANN'S APPROXIMATE POSITION
MEASUREMENTS

In Ref. 1, pp. 442-445, von Neumann considers the fol-
lowing measuring processes that measure the position ob-
servable approximately. The measured system and the appa-
ratus system are one-dimensional systems described by
Hilbert spaces # = L*(R) and %" = L?(R), respectively;
their wave function will be denoted by #/(x) and 7( y). The
interaction is described by the Hamiltonian H of the form
H = —ix(d/dy). The measurement is carried out by the
interaction from time 0 to 1. The pointer position of the
apparatus system is the position observable ¥ on the Hilbert
space % . Assume that the prepared state of the apparatus
systemis apurestate g = |£ ) (£ | such that £( y) isbounded.
Thus we have a measuring process M = (J,Y,|£ Y(£|,U ),
where U = exp( — iH).

By computations in Ref. 1, p. 443, we have

Ulp(x)n( ) = [¢(x)n(y — x)). (5.1)

The corresponding CP instrument # is obtained by Eq.
(2.2) as follows:

J(dy)p=Ex[(1eY(dy)HU(po|E)ENU*L, (52)

forallp € 7 (#°). Let A, be the multiplication operator on
# =L*(R) such that (4,9)(x) = £(y —x)¢(x) for all
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¥ € #. Then, we have, for all € ¥, ae £ (¥), and
Be #(R),

(¥|F (B)*a|y)
= Tr[a.? (B)(|$)(¥|)]
=Tr{(ae Y(B)U(|¥){¥|®|£){EHNU*]

= LL Wx)EY)|
X U*a® Y(B)U |[¢(x)E( y))dx dy

=f J Ey—x)p)|
B JR
Xa® l|E(y —x)¢(x))dx dy

= f (4,9lal4,¢)dy = (Y| LA *ad, dyly). (5.3)
B
Thus,
S (B)p= J A, pA} dy,
B

forallp € 7 () and B € % (R). Now, we have shown that
the CP-instrument .# corresponding to the measuring pro-
cess M considered by von Neumann' is just the covariant
instrument considered by Davies (see Ref. 7, Theorem 4.6.1;
and see also Ref. 17, Theorem 4). By Ref. 7, Theorem 4.6.1,
the corresponding semiobservable X is the approximate posi-
tion observable such that

X(B)Y(x) = (LXB(.V) lEx —»|? dy)lﬁ(x)-

It is easy to see that a family { p, ; ¥ € R} of a posteriori states
with respect to an a priori state p is given by
Py = (1/Tr[A4, pA}])A4, pA7. (5.6)
Thus, this measurement is, obviously, quasicomplete.
By Theorem 2, we can conclude that von Neumann’s ap-

(54)

(5.5)
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proximate position measurement satisfies (GL), i.e., the
generalized Groenewold-Lindblad inequality holds for ev-
ery a priori state with finite entropy.
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A commonly encountered n-dimensional integral associated with a relativistic quadratic
Lagrangian is explicitly evaluated for arbitrary ». In the limit n— co, this integral is given by the
usual Van Vleck—Morette determinant. The main advantage of the present approach is that it is

simple and direct.

I. INTRODUCTION

Let y,oyieM,, where a,B,..=1234 and
k=0,1,..,.N. We set y, = 0=y, and put
Ve =Y — Vi1 . (N

This paper is devoted to the explicit evaluation of the integral

w N-—1
F”=N2f I (—iz?d%,)

w n=1

N

Xexp[i Y [Di8vr + N~ wFrdv, ] ] , (2)
k=1

where ~ denotes the transpose, g«>g, is the metric tensor

onM,,

gaﬁ=diag(1,1’ls"‘l)’ (3)

AeA, g = — Ag, is a covariant rank-2, constant antisym-
metric space-time tensor, and « is a constant. This type of
integral arises in the phase space path integral evaluation of
the Green’s function associated to the Dirac equation for an
electron moving in a constant background electromagnetic
field.»* Heretofore this expression has only been evaluated
in the limit N— o and by altogether different techniques®~
than employed here.

In the next section we explicitly evaluate Fy, for arbi-
trary N. The technique that we utilize is quite elementary,
and it is gratifying to find a simple solution to a simple prob-
lem, viz., a Feynman path integral over a quadratic Lagran-
gian. The last section is devoted to an application of our
results.

Il. EVALUATION OF F,,

For each N=12,.. we consider y.eM,
k=0,1,.,N+1withy,=0=yy,,. The y,, k= 1,..,N,
are our integration variables. We define, for each N, a real
N X N matrix Wy Wy, according to

Vi = Wy V5 » 4)

where the Einstein summation convention over repeated in-
dices is operative. The W, has matrix elements equalto + 1
along the main diagonal, — 1 directly below the main diag-
onal, and zero elsewhere. We put (the tilde denotes trans-
pose)

Ty=Wy+ Wy, (5)
and note that
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N+1
kz 048V = V3Bup Tani YE=9(8® Ty)y . (6)
=1
In addition we write
N+1
z j)kAvk =j’(A ® WN )y . (7)
k=1

In this notation we find that F of Eq. (2) is given by
FN = N2( _ iﬂ.~—2)N— 177,2(N— 1)
X [det{ —i(g®@Ty_, + N 'xde Wy_)}]7"2,

where we have used the well-known relation ( d "x e ~**
= 7"*[det 4 ] ~'/2. We factor out — ig®I, where I de-
notes the (N—1)X(N—1) unit matrix, and use
det( —ig®I) = ( —i)** 1 to obtain

Fy=N?[det(6@Ty_, + N 'sg~'de Wy_,)]7">,
(8)

where §>03. The determinant in Eq. (8) may be evaluated
as follows: We put @ = (N + 1) ~'x and consider

det(6@ Ty +ag 'de Wy)

=det[6® (Wy + Wy) +ag"'de Wy]

=det(5@ Wy)det[Se W 'Wy + (6 +ag 'd) eI |

=det[6eWy'Wy+ (5+ag~'A)el],
where I denotes the N X N unit matrix, and we have used
det(Wy) = 1. Clearly, once the characteristic polynomial
of W 5 'W,y is determined, this determinant may be explicit-
ly evaluated. We shall proceed with a straightforward calcu-
lation of this polynomial.

In order to calculate W 5 ', weset W, = I — V. From
the definition of W), we see that V}, is nilpotent, verifying
(Vx)" =0. In terms of Vy,

e

N-—-1
W)FI = 2 (Vlv)n= z (VN)n-
n=0 n=0
Therefore, as the reader may readily verify, W 5 ! is given by
the lower triangular matrix with matrix elements equal to
+ 1 on and below the principal diagonal, and zero else-
where. We find that W ; W), is the matrix whose elements
are equal to + 1 in the first column, — 1 directly above the
principal diagonal, and equal to zero elsewhere. We denote
the characteristic polynomial of W 5 !#,, by Dy (1), which
is defined according to
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Dy(A) =det(W 5 'Wy —AI) . (9)

We expand this determinant in terms of the elements in the
last column and deduce the simple recurrence relation

Dy= —ADy_,+1. (10)
Hence,
N
Dy()=3 (=4
n=0
=[1—-(=A¥1](14+4)71. (1)

LetA,, n = 1,...,N, denote the eigenvalues of W 7 W,
Dy (4,) =0. In terms of these eigenvalues we may express
D, as a product

N
Dy(4) =Dy(0) J[[ A —4,)(0—4,)"!

n=1
N
= II (/ln _A)X‘n_l)
n=1
or
N
Dy =] A —4), (12)
n=1
since

N g
[[ A =det Wy ' Wy =1=Dy(0).

n=1
We may now explicitly evaluate F,, of Eq. (8), which we
rewrite as (¢ = «x/N)

+(6+ag™'4) eI} V2, (13)

We denote the eigenvalues of g~ '4 by + E, + iB, and find
that
det[So Wy Wy_, + (5+ag '4) 8]
N-—-1
=] 4. +1+aE)A, +1—ak)

n=1
XA, +1+iaB)(A, +1—iaB)
=Dy _(—=1—aE)Dy_,(—1+4+akE)
XDy_(—1—iaB)Dy_,(— 1+ iaB)
= — (a*E’B*)7'[1 — (1 + aE)"]
X[1— (1 —aB)"][1— (1 +iaB)"]
xX[1— (1 —iaB)"].

In this expression the last equality follows from Eq. (11),
while the third equality is a consequence of Eq. (12). There-
fore we arrive at our main result

Fy=(EBA) [ —{1 — (1 +kE/N)™}
X{1—- (1 —«xE/N)*H1 — (1 + ixB/N)"}

x{1 — (1 —ikB/N)"}] V2, (14)
Passing to the limit N— 0, we find that
F=lim F
= 12EB [4 sinh(xE /2)sin(xB /2)] . (15)
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ill. APPLICATION
Let F,;, =Ap, — A, 5, Where A, =1/2x°Fg,, de-
scribe a constant electromagnetic field. In his classic realiza-

tion of the Green’s function for a Dirac electron a constant
electromagnetic field, Schwinger® employed a so-called

proper time method to evaluate the propagator
(x",5|x',0) = (x"|e~*™|x'). Here II* = Mg~ 'l = I 11,
where II, =p, —ed, and e = — |e| is the charge of the

electron. Asis very well known, this propagator may also be
evaluated using the phase space path integral technique in
which one writes

(x",s|x",0) = 1&1m (x"|(1 —isN ~'II*)¥|x') ,

and inserts complete set of states to obtain
(x”,s|x',0)

N—-1
= hm (217)“‘”[&7 pr I[ 4. 4%,

n=1

Xexp[ z [ Pe(xx —x,_)) —sN "', g~ lnk]]

o 1 _Af_ 2N N—-1 4

Al'l—l»lolo T (41rs) f ,,l;Il 4%

: N

xespl 3, o+ 22 5um] ]
where in the last step we have integrated over momenta and
setx, — x, _, = U;. Here it is understood that x,, = x” and
xo=x'. We denote the argument of the exponential as
iS[x]/2, where § is the action associated with the Lagran-
gian L = %gx/2 + e%Fx and the path {x, }. To further sim-
plify this expression for {(x”,s|x’',0), we change integration
variables to the Feynman variables y = x — x, where X is the
solution of the Euler-Lagrange equations verifying
%(0) =x'and x(s) = x". Using S[x] = S[x] + S[ y] (the
¥, vanish at the boundaries of the interval, that is,
¥o= 0=y, ) we find that the propagator is given by

(x" s|x',0)

{tS[x]} N? f”“ (—id%,)
N—N’o 1(4’77'5')2 ne=1 17'2
. - 2es .
X expii Z U, 8V, +—xkak” .
k=1 N

This is of the form of Eq. (2) with x = 2es. Hence

0 iS[:Tc]/Z I F SI=12 F
” r, —_ im — x R
(x"s1x.0) i(475)? N i(4rs)?
which, using Eq. (15), we record as
isS (%)/2
(x" sx',0) = e eskE esB (16)

i(4ms)? sinh(esE) sin(esB)
For completeness we remark that S[X] can easily be com-
puted, and is given by

S [x] = ex'Fx" + }H{(eF)coth(eFs)}r, (17)
where 7 = x" — x’. An expression equivalent to Egs. (16)

and (17) was first given by Schwinger [see Eq. (3.20) of
Ref. 6] using a proper time formalism.
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Using the prodistribution theory proposed by DeWitt-Morette [C. DeWitt-Morette, Commun.
Math. Phys. 28, 47 (1972); C. DeWitt-Morette, A. Maheshwari, and B. Nelson, Phys. Rep. 50,
257 (1979) ], the path integration of a time-dependent forced harmonic oscillator with a two-time
quadratic action has been given in terms of the solutions of some integrodifferential equations. We
then evaluate explicitly both the classical path and the propagator for the specific kernel

introduced by Feynman in the polaron problem. Our results include the previous known results as

special cases.

I. INTRODUCTION

The propagator of a particle from position to position in
nonrelativistic quantum mechanics can be expressed sym-
bolically as

x(T) = xp .
K(x,T;x,,0) =f CXP{(L)S[X]] D[x], (1)
x(0) = x, ﬁ

where the symbol D[x] implies that integrations are per-
formed over all possible paths x from x(0) =x, to
x(T) = x,. In this path-integral theory of polarons,’ Feyn-
man introduced for the first time a two-time quadratic ac-
tion functional. The problem is to evaluate the path integral
(1) for an action of the form

T
S[x] = f [% m(x*(t) — wix*(1)) +f(t)x(t)] dt
0

T T
—-f dtf G(s8) [x(t) —x(s)]1*ds 2)
0 0

with the symmetric kernel G(¢,s) and the time-dependent
force f (¢). Following Feynman’s polygonal approach,’ the
pathintegral (1) has been evaluated exactly for the two-time
quadratic action® with w, = f (¢) = 0, for the harmonic os-
cillator with a two-time quadratic action* and for the con-
stant forced harmonic oscillator with a two-time quadratic
action.’

Using the prodistribution theory proposed by DeWitt-
Morette,%” Maheshwari® and Bosco® calculated the path in-
tegration of the harmonic oscillator with different memory
terms. Recently, Khandekar ez al.'® have derived a general
formula of a two-time quadratic action with generalized
memory by the same technique. In this paper, we use the
Cameron—Martin transformation’ to derive the general for-
mula for the propagator of a time-dependent forced harmon-
ic oscillator with a two-time quadratic action. For the specif-
ic kernel G(z,5) used by Feynman in the polaron problem,’
we are able to calculate explicitly the classical path and the
propagator.

*) On leave from Departamento de Fisica, Universidade Federal do Parana,
Caixa Postal 19.081, 80.000 Curitiba, Brazil.
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Il. GENERAL SOLUTION
The propagator of the action (2) can be written

e 2

X8[x, + (VA/m)z(0) — x,], (3)

K(x,,Tx,,0) = f dw”, (2) exp

with

T
Vix] = f [ — % mawix*(t) +f(t)x(t)] dt
0

T T
—f dtf G(t,5) [x(2) — x(s)]* ds. (4)
(] 0

Here *, (z) is the Wiener prodistribution on Z, with co-
variance

AL (45) =0 —s)(T—1)+0(s—1)(T—5), (5)
and Z_ is the space of continuous paths {z(¢)} such that
z(T) = 0. The step function 8 is equal to one for positive
arguments, and zero otherwise.

Let Y, be a copy of Z_ and make change of variable
fromz=2Z_  toy=Y_ defined by

x, + (JA/m) z(2) = u(t) + (JAi/m) y(1),

where 4 (¢) is the classical path from (0,x, ) to (T,x, ). Using
the classical equation of motion, we obtain

K(xbyT;xa,O) =exp[';;ScI]J' dw'ﬁ- (.V)
Y+
[ 1. ZJT ,
Xexpy ——imwg y(e) de
2 o
T T
—iL dtf G(ts)[ y(t) —y(S)lzdS]
0

x8[ (V#/m) y(0) 1, (6)

where

T
S =f [% m(i?(t) —a)(z,uz(t))+f(t)u(t)] dt
0
T T
—f dtf G(t,s) [u(t) —u(s)]*ds 7N
0 0
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is the classical action function along the classical path u.

Now by using the Cameron-Martin formula the inte-
grand in (6) can be absorbed into a new prodistribution
o, (y)on (alsoacopyof Z,). Finally, by combining
the §-function with the integrator dw, ( y), the propagator
can be reexpressed as an integral over the space () of paths
vanishing both at O and 7. The Gaussian prodistribution
@( y) on the space ), which is Leray associated (Ref. 7, p.
283) to the Gaussian prodistribution @ ( y), is normalized
to

o(Q)=| do,(»S[y(0)]

n+
= (2mi) ~V?|det A, (,5)]| V2 (8)

Its covariance A(¢,5) is the kernel of Jacobi operator, which,
for the case of two-time quadratic action (see the Appendix
for derivations), is

1 m[(_d_)z + a)z] A(ts) — UJ G(r,t) dT] A(ts)
4 dt ° 0 ’

rT
+ f G(t,T)A(r,s)dr=6(t —5),
0

with A(0,s) = A(T,s) = 0. (9)

Furthermore, the classical path u(¢) satisfies the following
integrodifferential equation (see the Appendix)

T
j:—m(il + wyu) +f G(t:5) [u(t) —u(s)] dS% (0,
0

u(0) =x, u(T)=x. (10)
With the help of (8)-(10), the propagator has the form

K(x,,T:x,,0) = (m/2mifi)*/?|det A(0,T)| /2

Xexp[% [mu(t)it(t) T

T
+if FOu® dt]]. (11)
2 b

In order to evaluate the determinent of A(0,T), we con-
sider the function A, (0,7) satisfying the equation

1 dV | 2 T
—m[(—) + Q5| A (8s) +p | G(47) A, (78) dr
4 dt o

=6(t—5s) (12)
and boundary conditions

A, (0s)=A,(Ts) =0, (13)
with

T

02 =w? +J; G(7,t) dt,
and p a parameter. By using the well-known formula

S(Indet A,) =Tr(A;'5A,), (14)
we have
|det A,| = |det Ag| exp{ fl oTr(A;laA,,)]. (15)

=

Taking the variation of (12) gives
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T 1
AT'6A, = —J; G(t,7) [J; A, (75) 5,u] dr. (16)

Finally, we obtain
|det A(0,T)| = |det Ao(0,T)|

T 1 T
Xexp[ — j dtf d,uf dr[G(4,T)A, (1,0)] ]
0 0 0
an
Here, |det Ay(0,7)| = sin Q,T is the well-known result for
the harmonic oscillator.

Therefore, the propagator has been given in terms of the
classical path #(#) and the kernel A, (,5) of a generalized -
parametrized Jacobi operator. But the integrodifferential
equations (10) and (12) are usually very difficult to solve
for the general G(1,s).

lil. A SPECIAL CASE
For the kernel G(1,5) of the polaron problem,' we have

G(t,5) =} mQ*0’$(1,5),

with (18)
#(ts) =cos[w(} T — |t —s5])1/20 sin(JoT).
Let 02 = Q2 + w3, then Egs. (12) and (10) become
d\? T
[(-‘-1-;) + Qg] A, (15) —,u().zwzf ¢(t,7)A, (7.5)dT
0
=58(15), A,(05)=A,(Ts)=0, (19)
and
T
it + Q%u= szzf d(t.5)u(s)ds +f(—t),
o m
u(0) =x, u(T)=x. (20)

Since ¢ (2,s) is the kernel of operator (d /dt)? + «?, after
acting the operator on both sides, Egs. (19) and (20) be-
come

[(%)2 +02 ] [(%)2 +02 ] A, (15)

d\? 2
= — [(——) +o ]8(t,s), 21
dt
and
)+ J[G) +er ]
(& +en ] [(2) +ot Juco
dt m
where
02, =1 (02 +0* + {[1(Q2 — 0*)]? + p0?0?}/?
(23)
and
(02i =£(Q% +o®) i{[i(ﬂé —wz)]2+ﬂza)2}”2
(24)

The solutions of Eqs. (21) and (22) can be expressed as
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A, (1s) = [1/(9% —Q%)]

X [(@ = Q)AL (1) — (@ — QL )A_(19)],

(25
and
u(t) =[1/(0*. —a? )]
X [(a)2 _w2+ )u+(t) - (0)2 _wz._ )u—(t)])
(26)
where A | (2,5) and u  (?) satisfy the equations
dyV | o2 _
E + Q% [A, (15) = —8(ss) 27
and '
d\? ()
@ efmte e

In order to get the boundary conditions for A | (2,5), we
need to substitute the solutions (25) into the original equa-
tion (19). Then we obtain

Ai (ns) =Aj: (OJ)’
(0* — Q% YA, (05) = (0® — Q2 )A_(0,5), (29)
d d
ZA LAY
(dt +(55) dt —(t’s)) t=0
d d
N LAY
(dt +(55) dt _(t’s)) t=T

Then after lengthy but straightforward calculations, (17)
becomes

J

|det A(0,T)| = |det Ag(0,1)|

T 1 T
Xexp[ - J- dtf d,uf dr[G(t,7)A, (7,1) ] ]
o Jo Jo

T 1
= |det AO(O,T)Iexp[ —f dt f du
0 (]

‘02,2
X[ Zﬂ = 2
0 — 02

_( (0% — &% )sin*(0T/2)

172
2D sin(w, T/2) sin(a)_T/Z)) ’
(30)

(A_(51) — A+(z,t))”

2 .2
D= (wy o) sin(w‘T) cos(a)*T)
o, 2 2

2 _ 2
— - —) sin(w+T) cos(w_T). 31
2 2

@

The general solution of (22) can be written as
u(t) =a, sin(w t) + b, cos(w. 1)
+a_sin(w_t) +b_cos(w_t) +u, (1), (32)

with the particular solution

(t)——f ()[
“ (0 —a? ) o d

0? — w?

——l—sinw_(t—s)] ds.
o_

sinw_ (t—35)

(33)

Substituting (32) into (20) and using the boundary condi-
tions of u(¢) give

b+ +b_ =x0,
a,sinw, T+b,cosw, T+a_sinw_T+b_coswo_T=x—u,(T),
a, sinw;T—b+(1—cosa)+T)+a_ sinw_T—b_(1—cosw_T) _ " (D u, (D) (34)
(02_,, —@? w0 — a)2+ —w? 0® —o? ’
w, la,(1—cosw, T)+b, sinw, T] +w_[a_(1 —cosw_T)+b_sinw_T]_ # (T) u, (1)
w?, —o® 0’ —w W —? ot — @
with
uk (1) = 2 ff(s) ( )sma;i (t—ys) ds. (35)
m(w —a)+ )
Solving the system of equations (34) gives
1 .1 1 1 1
b, =+ 7 {(x——xo)(m_ s1n—2—a)_Tcos7&)+T—a>+ s1n7w+Tcos Tw_T)
T .
+f f&) [cos—-l—a)_Tcos o, (i T—s) —cos—l—w+Tcos w_(iT—-s)] ds]
o m 2 2 2 2
Zxoa)q: (wz_ —0)2_+_ ) 1 . 1
cos —w_ Tsin—w_T, 36
dw: —0?) - 2 F 2 7 (36)
a, =+ (I/sinw T) {[(a)zi — o)) /(% — o )] (x —xp) —uFf (Mt (l—cosw, Tb, } (37
where
d=2(e% —ab ) [a)+ sin iaz)+Tco:iw_T__. w_ s1n;w_Tco235a)+T] . (38)
o’ —o * — @
Integrating (10), we have
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T

1 T
u(?) dt+—f f() dt,
m Jo

= G(s,t). Combining (11), (30), and (39), we obtain our principal result, namely the propagator, for the system

(T) = i(0) — w2 f (39)

0
since G(¢,s)

(2),

2 _ .2 3n2 T 2 172
K(xb,T;xa,O)=( mw, —o-) s @l/2) )
4mifiD sin(w ., T /2) sin(w_T/2)

T T
X exp {(i/Zﬁ) [m(x—xo) u(0) —xf [mwf,u(t) —f(t)] at +-’i—f u(t) f(r) dt” . (40)
(s 0

Here we should mention that (40) is invalid when sin(w_ T /2) sin(w_7T /2) = 0, which will be considered in the following
paragraph. After a lengthy but straightforward calculation, we can show that (40) reduces to (36) of Ref. 4for f(¢) =0and
to (38) of Ref. 5for f(2) =f.

IV. DISCUSSION (WHEN o, = 0)

For completeness, we consider the special case w, = 0, which implies @_ = 0, and the classical path is of the form

uo(t) =5, sin(w_ ) +c, cos(w 1) + o+ it + ud (1), (41)
with
uj(r) = 2(t—s)] ds,
(42)
and
2
s, = ﬂz (x — x;) cot o T _ f f@ [cos .t — cot 2 7 sinw_ t+ 1] dt, (43)
+ 2ma’,
— Q2 2 r o, T
L= (x —x) + 3 f f(t)[cot I (cosw, t—1) +sinw+t]dt, (44)
+ 2mw’, Jo
2 2 T
Co= f (x—x) — L f f(t)[cot @, T (cosw, t—1) +sina)+t] dt + x,, (45)
20°, 2ma’®, Jo
2
€ =——(x—X —1t)dt (46)
+

r

Taking the limit value of (30) as @ _—0, we obtain

K T 0) ( m 172
. 15%.0) = 21riﬁT) "osiniw,T
-exp[ (i/5)S, ],

o sinjoT

(47)
with

Sa =im(x —x,)(s 0, +¢;)

2
+ 12X (s ars Lo, [(rwenen

2 %

+—c+J f)(cosw . t) dt+ic0J. f@)de
2 o 2 o

1 T
+—c1f tf(t)dt
2 o

T t
[ @[ dsr £
2mo, Jo 0
X [(Q¥w, ) sinw, (t —5) —0*(t—s)]. (48)
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When a memory term is present, the exact solution of a qua-
dratic system given by (47) is not of the form

K(x,T:x,,0) = det [ Sl ]
axaxo #i
Indeed here the Van Vleck-Morette determinant
%S, _ _mQ® cosio,.T ma’ (49)
Oxdx, 20, sinjo,T T

is different from the normalization in (47). For the case of
o, =f (1) =0, Eq. (40) reduces to (3.45) in Ref. 3 as we
expect.
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APPENDIX: LAGRANGE OPERATOR AND JACOBI
OPERATOR FOR THE SYSTEM WITH A TWO-TIME
QUADRATIC ACTION

We derive the Lagrange equation and the Jacobi equa-
tion for the system with a two-time quadratic action by using
the one-parameter variation method.”!! Let A(£) be the
space of C ! mapping x on = (0,7) C Rinto R. Introduc-
ing a one parameter family of functions a(u,t) € A(Q),
where u € [0,1] such that a(0,t) is the classical path and
a(l,t) = x(t), we can rewrite the action functional (2) as

T
Sla] = f {% m[a*(u,t) — o} ()] +f (Ha(u,t)
0

T
—2a%(u,t) f G(t,5) ds + 2a(u,t)
0

T
Xf G(ts) a(u,s) ds] dt, (Al)
0
since G(t,5) = G(s,t). Furthermore, we have
(Soa)(u)
=ma(u,t) da(ut) |
du o
T T
+J‘ [4f G(ts)a(u,s) ds — méa(u,t)
0 (1]
T
— moja(u,t) +f(t) — 4a(u,t)f G(ts)dS]
(1]
xJewn 4 (A2)

du
and

T T
(soa)"(u)=f [4f G(;;)Mds
o o du

m oa(u,t) — ma? da(u,t)
du

T
_48a(u,t)J' G(1.5) ds] da(u,t) dt
du o du

T T
+ f [4f G(ts)a(u,s) ds — ma(u,t)
0 0
— maba(ut) +f(t) —da(u,t)

T 2
xf G(ts) ds] 92w 4 (A3
o o>
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For variation, keeping the end point fixed,

da(u,0) _ da(u,T)
du du
(A2) reduces to

=0,

(S a)'(0) =f [E(t)a(u,z) M] dr,
(1} au =0
where

Ly = 4f G(1,5)(-) ds —m (_) _ ma?
0 dt

T
+f ) —4f G1s) ds (A4)
0

is an integrodifferential operator. By definition we obtain the
Lagrange equation
LD a(0,) =0, (A5)

which is exactly equivalent to (10) as needed. With the help
of (AS5), we obtain

T A
(S°a)"(0) sf [J(t) ‘9“(0")] 900 5 (a6)
0 du du
where the Jacobi operator
A d 2
J(t)= —m (Z) — may
T T
—4J- G(1,5) ds+4f G(ts)(-) ds (A7)
0 (V]

is also an integrodifferential operator.
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Time-ordering techniques based on the Magnus expansion and the Wei-Norman algebraic
procedure are discussed and their relevance and usefulness to quantum optics are stressed.

I. INTRODUCTION

This paper has a twofold motivation: (a) to discuss rela-
tively unknown time-ordering techniques, and (b) to show
that these techniques are a useful tool to solve a large class of
differential finite difference equations, too.

The problem of time-ordering expansion is as old as
quantum mechanics and the most common treatment of it is
the Feynman—Dyson'! diagrammatic technique. However,
alternative rigorous procedures, apparently not widely
known, have been developed through the years by Magnus®
and Wei and Norman.? These techniques offer definite ad-
vantages with respect to the well-known Feynman-Dyson'
expansion and are tailored to be suited for a class of Hamil-
tonian operators appearing in many problems of quantum
optics.

The considerations we develop here are general enough
to be applied to diverse physical problems such as two-level
molecular dynamics, stimulated Compton scattering, and
the acousto-optic effect.

Let us briefly review the problems underlying the opera-
tor time evolution and time-ordering expansion. From ele-
mentary quantum mechanics® the evolution of the wave
function of a physical system driven by a time-dependent
Hamiltonian operator can be found formally by writing the
solution of the Schrédinger equation

iﬁz—f=ﬁ(t)¢ (1.1)
as
W)= U190, (1.2)

where U (t) is the time-evolution operator obeying the equa-
tion

iM:I?(:)fJ(:), fro)=1. (1.3)

If the operator His time  independent or if it commutes with
itself at different times ([H (t).H (t")} = 0), thesolution of (1.3)
is straightforward, i.e.,

() =exp[ ——;'-fo'f{(t')dt']ff(oy (1.4)

If the operator A () does not commute at different times,

*) Permanent address: University of California at Santa Barbara, Quantum
Institute, Santa Barbara, California 93106.

) Also at Istituto Nazionale di Fisica Nucleare, Sezione Napoli, Napoli,
Italy.
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time-ordering problems arise and the solution of (1.3) cannot
be expressed in the simple form (1.4).

The technique most frequently adopted to deal with the
evolution of {7 (¢) is the use of the Feynman—Dyson' expan-
sion

[exp[% J;I?(t "ydt '” .

o t

l ~
=1——] dt, H(¢

ﬁJ; 1H(4)

e
+(%) fodt‘fo dt, H(t)H(t,) + -

Where {-] , denotes the time ordering and plays the role of
the “chronological” operator. The expansion (1.5} is a per-
turbation ‘series with all the practical disadvantages of the
perturbative expansion. Indeed as noticed elsewhere,® the
operator U™t ), obtained by truncating the series, is no more
a unitary operator, furthermore it is expected to be accurate
for a small time interval or when & () can be treated as a
perturbation. In many problems H (¢ ) cannot be considered
as a perturbation or an accurate evaluation requires an ex-
cessively large number of infinitesimal orders. However, it
must be stressed that in many cases (1.5) can be easily han-
dled and each term can be usefully understood in terms of
the symbolic Feynman diagrams.!

To go beyond the expansion (1.5) we require at least (a) a
functional form of U/ (¢ ) which preserves the unitary nature of
the evolution operator; and (b) an exact form of the operator
without any recourse to perturbation, or if perturbation is
needed, a method that allows the expansion at any higher
order.

Two methods, essentially complementary, have been
proposed that satisfy the above requirements.

The first due to Magnus? consists in writing

Ult)=exp{d(t)}, A(0)= (1.6)

where 4 (t) is a functional of H (t), more precisely an infinite
series whose nth term is a sum of integrals of #-fold multiple
commutators of H ().

This method is now briefly reviewed, we follow a
simpler but rigorous version due to Pechukas and Light.’
The search for the time-displacement operator expressed in
the form (1.6) meets both the requirements (a) and (b) and is
an immediate generalization to a more complicated case of
the corresponding expression (1.4).

According to Ref. 5, for the time derivative of U{t),

(1.5)
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d; -1d-
d—U(t)—[ — ZA U, (1.7)

and the evolution equation (1.3), one immediately obtains

dA (1) [ add 1H

= . =. 1.8

dt et —1] it (18

(The operator ad A is a linear operator defined as (ad )X

= [4,X].) Expanding in series of the operator on the right-
hand side of (1.8) we get

— )n+1

dt 2 + ,.Z'l @m)! n(add) i’
(1.9)

where the B, are the Bernoulli numbers B, =}, B, =
Solving the above equatlon by iteration one ends up w1th the
expression

A= i?! (1.10)
where the (n + 1)th term reads
a,., =f dt'[_iad;.n
o 2
1 "2 . . 1H
— A add__|=. 1.11
o S addyad ,.-m]iﬁ (11D
The first four terms are
A1) = —ifif(t')dt',
4,00 = ——( )fdtfdt LG H1N],
- i
4,00 = ——{=) | at’ d”f dt"
3(0) 6(ﬁ).[) .[) g o
x{[H@™),[H(t"),H (")) (1.12)
+ [[HE™),HE")LHE)]},
A, = _L(_z_'_)4J‘tdt,J-"dt”fvdtmj‘"dt,,n
12\ # o o o 0

XLLHG "), [(H@™)H(t")LH(t)]]
+ (A=), [H™)H (") 1,H "))
+ (LA HE™)],[H@"),H(") 11}

We note that the structure of the Magnus expansion corre-
sponds to the continuous version of the Baker—-Hausdorff
disentangling theorem.®

The second method we describe is the Wei~Norman al-
gebraic procedure 3 This technique is complementary to the
previous one, in the sense that it works when the Hamilton-
ian operatorH (¢) can be expressed in terms of the generators
of an n-dimensional finite Lie algebra. The Magnus expan-
sion, on the other side, applies when the multiple commuta-
tors in (1.11) converge to a ¢ number.

According to Ref. 3 we write the Hamiltonian as

m<n

H(t)= Zaj(z)LJ, (1.13)
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where the ﬁj are the generators of the Lie algebra, the a;(¢)
are linearly independent functions of ¢, and the index j runs
from 1 to m<n, where n is the dimensionality of the algebra.

The form of the solution (1.4), being valid, within this
framework in the case of a one-dimensional algebra, suggests
the following generalization to the case (1.13)

U@ = H exp[g, (L],
i=1

The functions g;(¢), entering the above expression, can be
obtained from a set of nonlinear differential equations whose
specific form depends on the a,(t), and the algebraic struc-
ture constants involved in replacing (1.14) in (1.3) immedi-
ately yields

i—1

Z 8,(1) 1'[ exp(g,(t)ij)]i,- ,ﬁ- exp(g,.(t)i.,)]

(0)=0 (1.14)

= z a,(OL,U(z) .

i=1

(1.15)

After a postmultiplication by the inverse operator U ~* and
the direct computation of the expression

i1 n " 1 .

1] exote, OL)|E[ 1T esnt—g 0L,

j=1 j=i—1
=2 £l (1.16)

=1

we find
E“i(’)i = 2 Z (&L, (1.17)
i=1 j=1li=j

where the matrix elements £;; depend on the algebraic struc-
ture constants and on the g functions.

The linear independence of the generators reduces (1.17)
into the nth-order system of differential equations

(al) _ Srivbin ](51)
a, 5»,2 '"gn.n . n '
It is therefore clear that once the explicit form of g, (¢) and
&, are known one can determine the functions g; solving a
set of nonlinear differential equations. For the proof of inver-
tibility of (1.18) see Ref. 3. Let us finally point out that it has
been shown® that uncoupling theorem holds for all solvable
Lie algebras and for the real “split three-dimensional” sim-
ple Lie algebra (see Sec. II).

The paper is organized as follows: In Sec. II we will
discuss systems that allow exact solutions, in Sec. ITI we will
discuss perturbation methods, and finally in Sec. IV we pres-
ent some conclusive remarks.

(1.18)

. EXACT SOLUTIONS

In this section we will apply the above-discussed tech-
niques to specific cases of physical interest in quantum op-
tics.

The first we consider is a Hamiltonian operator that is a
generalization to the two-level case of the so-called Kano
Hamiltonian,” namely (% = 1)

H=olt\, +Q*VJ, +QeV_+B(), (2.1)
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where w(7), O*(7), Q(7), and B (7) are time-dependent, com-
plex nonsingular functions, furthermore the J operators
obey the well-known angular momentum commutation rela-
tions

[}+r‘7—] = 2‘73’ [ji "73] = :F}j:
Assuming, for simplicity, that the Hamiltonian (2.1) drives a
system of coupled harmonic oscillators with n__, n_ initial
quanta in the upper and lower level, the more general time
evolution of the state can be described by the wave function

le)) =

where/is an integer accounting for the number of exchanged
photons and the C,(t ) are time-dependent coefficients denot-
ing the amplitude probabilities of / emissions at time z. The
Schrodinger equation gives for the coefficients C,(¢ ) the fol-
lowing motion equation:

:_dcl =w(t)[n+
dt

(2.2)

'-2_ Ct)n, +ln_—1),

I=—n_

(2.3)

n +1]c,(t)+ﬂ(t)c,(t>

+ QNI =D, +1+1)C, ()

+ Q¥ e Nn, +1)n_ —1+1)C,_ (),
C0)=c,.

(To deduce (2.4) we have used the Schwinger realiza-

tion of the angular momentum algebra, namely (see Ref 4)

L=ata_, J_=a*a,, J3—§(a a,—arta.),
where & 4, @% are creation annhilation operators
([¢1.4,]= —1[a},a_]=0). The initial condition
should be C, (0) = §,,, we have assumed a generic discrete
function to discuss slightly a more general problem.)

This differential difference equation already has been
studied in Ref. 8 where it was pointed out that it belongs to
the family of Raman-Nath (RN) equations® (i.e., spherical or
SU, RN). We must stress that, according to the discussion of
the previous section, the introduction of Eq. (2.4) is not a
necessary step. The analytical expression of the evolution
operator indeed can be found by means of the Hamiltonian
operator (2.1). We have introduced this rather artificial step
to remark that the technique we discuss here is also a power-
ful tool to solve equations of the RN type.

Adopting the same procedure of Ref 8, we use the trans-
formation

=+1]]

Ci(t) = ( ——i)'exp{ Jm(t yde' [
(2.5)

(2.4)

Xexp[ — if ﬁ(t')dt’]-M, ,
0

which, once inserted in (2.4), yields

d —_ 3 * ] '
ZMI— Q(t)exp[ lJ;dt o(t )}

No_ =D +1+ DM, ,

+ Q"(t)expl + z'fdt 'co(t')]
0

N+ D(n_ =T+ DM, _,, (2.6)
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MI(O) = ;ikck(s,,k .

We now can solve the problem of finding the explicit
solution of M,;(t) exploiting the Wei-Norman technique
discussed in the previous section.

The structure of (2.5) suggests the following equation for
the evolution operator:

dir(r)

dt

=T@owe), Uo=1,

Tie)y= - )exp{ - ifdx' m(t')]}_ (2.7)

+ Q¥ )exp{ + iJ:dt ' oot ')]L

According to (14) the explicit solution of (2.6) can be written
as
—fleV_31.
(2.8)
Before giving the differential equations from which one can
derive the functions f; g, and A, we notice that, to calculate
the functional form of (2.6), it will be sufficient to evaluate
the following matrix element:

Gmky = § § (= DIe0IT O]

m=0r=0 min

Ult)=exp{2h(t)J,} explg(t V. } exp{

X (| exp[2h(LWU T kY.  (29)

After some algebra and exploiting the properties of the J_
operators we find

AT e)k)
= exp{2h(t)[4in, —n_)+11}[gle)}' "

oy G

X Fl—n, +kn_—k+Ll—k+ 1;f(¢)glt)).
(2.10)
Combining (2.5), (2.6), and (2.10) we finally easily find

G0 ,
=exp{ - if B(t')dt’}exp[[%(n.,_ —n_) +l]2£’(t)}
A :

xg(—z)’
X[( )(z—kl)]m

X F(—n, +kn_—k+ Ll—k+ 1,g(t)f0),
(2.11)

o [g(0)) %

where

14
F(t) =2h(D) —ifw(t')dt’ (2.12)
(]

and ,F,(---) is the hypergeometric function.'® The result (2.12)
is a more general expression of that obtained in Ref. 8(b).

Let us now consider the problem of writing the differen-
tial equations satisfied by (£,g.,% ).

It is easy to derive from (1.18) and from the algebraic
structure of the angular momentum operators the following
equations:
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h(t) = Q(t)exp{F (1) }g(1) ,
g(t) = Q*(exp{ — F ()} — g(1)-h(2), (2.13)
firy =Qexp{# (1)}, h(0) =£(0) =g(0) =

It can be shown that the solution of (2.13) depends on the
single Riccati equation

4—ut+r(u+q()=0, h(t)=u(t), u(0)=0
(2.14)
r(t) = _571“ Q) +io(n), 1) = — QO

The solution of (2.14) can be explicitly written in a restrict-

ed number of cases. In the less general case
o(t) = w, = const; O(t) = ) = const and real B(z) =0,
we easily get

h(t) = (i/2w4¢ — In (1 — p(2))"/?

(o2

g(t) = [p(O1"*[1 —p(1)]"?

-]

(2.15)
flt)= T!i(‘tp_)(t—)]l exp{—tarctan((%i)tan(it))],
R (L A =

In the case of n_ = 0 we get [see Ref. 8(a)]

n 172 @
C (1) =( I_) exp{m arctan( 5" tan— )](a(t))’

X(l o Ia(t)lz)(n_—-l)/2 (2 16)

a(t) = (— i)(ﬂﬁa—‘jtz—/g)exp[ —1i arctan( 60 tan(azt))].

The results obtained so far are very general. We can now
discuss some interesting limiting cases, when the number of
“‘excitation quanta” n , are very large.

A somewhat crude approach to the problem could be
that of taking the asymptotic limits # , — oo in (2.11). This
procedure gives the right functional form of the coefficient
C, but raises doubts on the correct expression of the func-
tions £, g, and 4. The appropriate and rigorous procedure
requires the so-called group contraction method,!' which
will allow us to understand the intimate connection between
the SU, algebra and its contraction to the “harmonic oscilla-
tor” and “‘shift” algebras.

We introduce a three-dimensional Lie algebra with gen-
erators H 1 Hz, and f. 3 with commutation relations®

[Hl, Hz] = uHm

[H], H3] = - MHS,

[HZ’ Hs] = - 5H1,
where A and § are numbers which define the explicit form of
the H operators. We leave, for the moment, the operators in
(2.17) undefined and notice that an evolution operator driven
by the H, (we mean by this a Hamiltonian of the type

(2.17)
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= [w(t)/2)H, + Q*(t) H, — Q(r) H,) [see (2.8)] exhibits
/> & and h functions defined by the differential equations
h(t) = 8g(1)f(0), |
g(1) = Q*(exp{ — F P} — Ag(Dh(1),
£ty = Q(exp{# V),

HP =24h(1) —if wo(t')dt’.
0

(2.18)

Itis easy to understand that when A = & = 1 the H operators
can be identified with

H =2, H=J, H=-7_ (2.19)

Furthermore if A = 0and § = 1 the SU, algebra contracts to
the three-dlmenswnal non-Abelian algebra with generators
{a*, &, I}, where @™, & are creation annihilation operators.
Finally when 4 = § = 0 all our algebra collapses in a “shift
algebra” with generators {£ *, £ ~, I}, where the £+ are
shift operators.

Let us now discuss the cases #_— o0 and n, —co.

A. Large number of lower level excitation quanta
(n_—x)

In this case the SU, RN equation (2.4) reduces to the so-
called harmonic RN equation'?

dac -
i— == oltin, +1)C, + QN TG,

+ .(_),(t)\/n+ +141C,, +B(t)CI,

Qe Nn_, B(t)=ﬁ(t)—"——+—"iw(t)
(2.20)

Q)=

This expression suggests the following identification of the H
operators:

2 =yn_a", I%-—: —n_a.

Therefore, setting A = 0, 5 = 1 in (2.18) we immediately find
the solutions

- JO "axe ’)exp[i L i wlt ")dt ”]dt

fle)= fo Qft ’)exp[ - IJ; olt ")dt ”]dt !

H=—-n_1, (2.21)

(2.22)
hie)= %f glt ) ()t

L[ aompin o
- f &tV (e) — gle V(") )de .

Furthermore, using the well-known asymptotic properties
of the hypergeometric function,'? we find for C, the expres-
sion
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Cit)= exp{ - iJ:B(t')dt']
xexp( —in.+1)[ o't Yexp] — Tate}0)

1 ‘ O ®{s’ ’ Ols’ ' '
Xexp[ —-2—1_J; [Q*eWt') + Qe "alt')]de }

(=D J(n, +)(n, +D!
XF =ML E e ) v@), (2.23)

where the L ! are the generalized Laguerre polynomials and

F(1) =f ﬁ‘(t')exp[ + if o(t")dt "]dt'.
0

a(t) = —1.?(t)exp[ f w(t")dt ]
y(t) = t[f ﬁ(t')exp{ — if a)(t”)dt"]dt’]
0 0
Xexp{if w(t’)dt’].
0

It is easy to derive from (2.23) the solution already found in
Ref. 12 when C,(0) = 8,,,8(t) = 0, v, = const,and = Q*
const, namely

(2.24)

n!
C, - + t I, - in, oot
1(8) -—————(n+ +I)!d( )ee
Xexp{z—f |a(z ") |*dt ]
(2.25)
Xexp( — |a(t)*/2)L, [la(®)}*],
alt) = — (nsmwot/Z) — /2
wy/2

B. Large number of upper and lower number of
excitation quanta (7, —«)

Equation (2.4} reduces, in this hypothesis, to the so-
called shift RN equation, namely

dc,
l_c-l_t— =w(t)IC, + Q(t )G + ﬂ‘(’ )Ci_1 +ﬁ(’ )C,s

=nn_Q(t), B=Bt)+ (n, —n_)2a(t).
(2.26)

The identification of the H operators is straightforward-

IA{l"—"O, H2 '\‘ +n E \/n+n -
(227)

Therefore setting A = § = 0 in (36) and exploiting again the
asymptotic properties of the hypergeometric function for
large n . (see Ref. 10), we finally find

C, = exp( -~ iJ:F(t \dt )
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X‘gc"e"p(‘”‘ Jo w(t')dt’) :((_:)) U=kv2
XJ]..k[z a(t)‘T(t)], (2.28)

where J,(-) is the cylindrical Bessel function of the first kind
and integer order, furthermore

a(t) = —zUn*(t ) - exp( fa)(t )dt )]
Xexp(—ifw(t’)dt'),
Y(t)—tUn(t )exp( fw(t )dt )]
g

It is easy to see that when B(7) =0, Q(z) = Q*(¢)

(2.29)

= const C; (0) = ;5 (2.29) reduces to the well-known so-
lution'®
=(— exp( —~ ;1—0—‘)1 [mi‘l‘-%/i . (230)

Before concluding this section we stress that the analysis
we have presented is very general and based on the Wei-
Norman technique. However, while this procedure is strictly
necessary for the SU, algebra in the case of the “harmonic
oscillator” algebra, the Magnus expansion is equally useful
(see the Appendix).

lil. PERTURBED SOLUTIONS

In the previous section we considered particularly sig-
nificant cases that admit exact solutions. In this section we
will discuss different situations where exact solutions are not
available but nontrivial perturbed solutions may be ob-
tained.

The analysis we develop in this section is relevant, e.g.,
to the evolution of quantum systems driven by Hamiltonians
of the type

H=o@ ), + et J? + [Q* )V, + Qe V_1+B(t),
(3.1)

where €(t ) is a nonsingular time-dependent function that can
be treated as a perturbation.

To illustrate the method we shall restrict ourselves to
the algebraically simpler case of €, w, and Q) = Q* time-inde-
pendent constants. However, we stress that the identical
procedure applies to the Hamiltonian (3.2).

We now will consider the specific problem of the stimu-
lated Thomson scattering of two counterpropagating elec-
tromagnetic waves.'*

According to Ref. 14 this process can be described by a
spherical RN equation of the type

dC,
dt

= wolC; + €l2C, + Q[J(n_ =D (n I+ DC,, (1)

+¥(n_ =T+ 1) (n, +DC,_, ()], C,(0) = 6.
(3.2)
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The main difference between the above equation and the one
considered in the previous section is the presence of the qua-
dratic term in /. However, if this term can be treated as a
perturbation (as happens in many cases of physical interest),
one can find a perturbed solution to first order in € [(3.2)]. We
proceed as in the previous section. Namely we introduce the
function

Cit) = (— 1) exp{ — ilwo + €l )it }M,(t),
which, once inserted in (3.2), gives the new expression

(3.3)

dM,
";" — L FD =TT D)
Xexplilwo + €(21 — D))(e)IM;_, (t)
—Vn_ =D (n I+1)
Xexp[ — ilwo + €21+ D)) IM,, (D)},

M, (0) =i%,,. 34)

The above expression, even if more complicated than those
discussed in Sec. II, suggests the following structure for the
motion equation of the evolution operator:

dU
2 =Tw)b,
7 ()

T(t) = Qe explie[2], — (n, —n_) - 11}, (3.5)
— Qe exp{ —ie[2], — (n, —n_) + 11}T_.
The presence of the .73 operator at the exponent, does not
allow any exact solution of (3.5) in closed form.
However, expanding the exponents up to the first order
- in € the T operator can be written as
T(1)=b(t YH, + CO(t )H, + €[b (1)) H,
+ C(¢)H, + p(¢ ) H,H, + (1 )H,H, ],
where the H are the operators introduced in (2.19):
bo(t) = Qe b'(t)= —tQi(An + 1),

Cott)=Qe ™, Cl(t)= —tiQ(An — 1)e~ "
3.7)
J

(3.6)

co), q(r)=aib°(t )
Q)

0

e = 5o
An=n_ —n_.
A convenient form to find the time evloution of /(¢ ) is
U = exp{ec(t )H  Yexp{en(t )H 2 Yexpley(t ) H 3}
x expled(¢ ) H, - H,}
xexp{ed(¢t )H H,Yexpled (s ) HLH,}
x explg, (£ ) A, Yexplg, (¢ )H,}explg, (¢ VA }, (3.8)

where the functions in the exponents are specxﬁed by the
following system of differential equations:

gilt)=h(t)+er'),
gt)=glt) + eg'(t),
glt)=flt)+ef't)

Here, f(t), g(t), and & (z) are the functions defined in the
previous section and furthermore

b l(t ) — elh(l)[gl(t)2 +g(t)2]‘1(t)] + 2b0(t)h l(t)

(3.9)

+2C%¢)g'(t) —2b°(2)(28(2)
+A@))+29()C%%),
Cl(t) =26°()y(t) + e #O[ f1 (1) —2f ()R (1)]

—4£(1)COt),
0=h'(t)— f'(t)g(t) — f(£)g' () —28(2)C°(t),

g(t)=8@t)+ 4@ +A()bO(t) —29(£)CO(),
(3.10)

p(t) =6(t)+2y()b°(t) — CO )4L(t) + A(t)),

0=A(t) +20(¢)b°(t) — 26(¢)C°(¢),
0=£(2) +6(£)bO(t) —8(2)C°(2),
0=1n(t) +26(2)b°(¢),
0=p(t)—20(t)C°).

Finally, using the properties of the H operators we find the
following expression for the C, (¢ ) coefficients:

&tanat) th ] (t)(1—|a(t)| )(n —n, =072

C(t) = [("1‘) (”+I+ ’)]m exp[i(n_ - n+)[arctan(

2 2

x[[l —iel’t+e(n, —n_+2D) (h'(t) —ia(t) (1 — |a(t)|*)/2%exp[2i arctan(w,/5 tan 6t /2)] f1(¢))

+eA(t)(§(ny —n_ 4207 -
_ . exp[ — 2i arctan(wy/4 tan 61 /2) ]
T a1 —le)|)”

(ny + D (n_ =1+ D]F(=npn_+ i+ Lle@) )
[(g‘(t) +a(t)}(1 — |a(t)]?)

X exp[4i arctan(wo/8 tan 6t /2)1 f1(¢)) - 1 .Fy(—nn_ + Lkla(t)]?)

(n_—=Nn,+1+1)

t)}1 —
(+1) —a

“+

|a(t )|*)exp[4i arctan(w,/S tan 8t /2) ]

(n,—n_+2)

1 —npn_+ LI+ ’]—c ~
XD = npn o+ LI+ Bla)) | —der oo S

X [16(t Ye M1 — |a(t ) |P)HF i ( —nn_ + Lhla(t)]?)

+ 0(t )elmotn
I+1
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- e[n(t )e"”‘”"‘—(l——-l—a—(t—)f)—l(l + 1)F(—n n_+ 11— Lla(t )]2)]

a(t)?
— ey(t)e a@®? (_—Dm_—I-Dm, +1+1)(n, +1+2)
(1—la®]’) I+ 1(I+2)
XoFy(—nyn_ + LI+ 3;Ia(t)|2)]. (3.11)

The results we have derived show that a perturbed analysis of quantum systems driven by Hamiltonians like (3.1) in principle
can be carried out analytically.

However, we must point out that (a) the system of differential equations (3.10) cannot be solved straight forwardly; and
(b) the expression (3.11) is rather complicated and in the present framework further simplifications cannot be made.

In any case these results can be usefully exploited when physical assumptions allow some simplifications or as a test of
numerical analysis.

Let us now discuss the “contraction” of Eq. (50) to (namely for large n_)

dc, -
iTt' =w C, +€’C,+ Q[n+ I+ 1C,, +Vn+1C_,], Ci(0) =c,. (3.12)

(This case is relevant to Hamiltonians of the type H=owp"a + €@*a)?+ Q[a* + a].) The perturbed solution of (3.12)
can be found using the same technique of group contraction discussed in the previous section. We omit the details of the
calculations and write directly the solution

Ci(t) = exp(in"f la(7)|? dr’)exp(;Zl|a(t) |2); ’((:—-:%)'—!exp( — ikawot)a(t) ~*c, {A;_ (¢t ) +iD;_ (1)},
0 H

(3.13)
where

A (t)=LI75()[1—ekC(t)] +

nrk1(: )+(’l+k+1)L +k+1( )]

la (t)l
9 0 Ia(t)|3][|a(t)l’L’n+’i+‘n( ) = (r+k+DLSACA ()]
(20
+ 2€ |a(t)|[n+k+1)L..+k+1( )
|a(t) awo

— la® L3520 )]—I (t)la |a(t)|[|a(t)|‘Li+i+’z( )—(n+k+ D (n+k+2)L13A350)],
Wo
Dy_,(t)= —el’t+e2C(t)|a(t) >+ G(t) —1/6tla(t)|* + 2(n+ k) + 1)2C(t ) —t|a())IL,35 () (3.14)
—e@t/D[|la@)PLL5 N ()= (n+k+ DLLZAZ ()] +el2t|a(e))? = 3C(1)]
X [la)PLZE () + (m+k+ DLIZAY ()]
+etk[(n+k+1)L,.+k+1( )—Lf,+’§c+_‘,(-)|a(t)|]

~atp| ©0 +Fla@ Pl )
+(n+k+l)(n+k+2)L +k+2( )]
and
QO \2 .
ct)=(2Y[r- fnee],
@, @a
2/ Q) t 13 | . .
Gl)= ‘7(—-—) [—Tcoszwot—T’—zms“’f” gt g in %ot+;;smw0t]’ (3.15)
O \3
R(ﬂ:..i(.&) [7tc05ﬂ+2tcoswotcosw_°t__ 7 siniwot_ 15 Sin%].
3 Wo 2 2 200 > za)o :

[TheL (. )are the generalized Laguerre polynomials of argument |a(r)|.] As final example we consider the further “contrac-
tion” of (3.2) when both n , are large quantities. In this case the spherical RN equation reduces to
dc,

t—dt—=w01C,+612C1+5[C,+1 +C_1], G(O)=¢; (3.16)
Using the same procedure leading to (3.12) we find
=3(— i) ~ke—fesll =kn2lp (4, +iD;_i}, (3.17)
k
where
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d {psm oot /2
Fwg \

A _=J_;(:) t+e€

ey )[(21—1)1, et ()

= d {psmwot/Z
; wo/2

(21+1)J, k1 (0 )]+—€Q \
dawy

Dl_kz[—612t+4en (Smwot
@Dy @o
02
+6£—(t008&)0t smwor)[-’; k— 2( )+Jl k+2( )]
wo wo

The argument of the Bessel functions left indicated by ( - ) is
ZQ(sm wyt /2)/ (@o/2).

IV. CONCLUSIONS

In this work we have discussed a rather general tech-
nique that can be usefully applied to a number of physical
problems. Furthermore the techniques we have developed
may be of interest even for mathematicians, since they
amount to a useful tool to construct solutions for a large class
of differential finite difference equations.

Concerning this last point we wish to add the following
comment.

In some cases when the structure of the RN equation is
particularly simple, namely when it can be derived from
Hamiltonians that do not involve noncommuting operators
[as,e.g.,the (E ,E —,T)generators] moredirect methodscan
be used.

To give an example we reconsider the shift RN equation
with constant coefficients (see Sec. II):

dc '
i—:i-t—'- =aC + Q[Cryy +C_1 ], C(0)=8,. (4.1)
Using the transformation (2.5) we get
dMm, . ‘
——l = -— e—’BxM,+1 + elﬁle__l,
dx
M(0)=16,, (x=0 B=awny/Q) (4.2)

Multiplying both sides of (4.2) by s' and summing over I we
find

d_r(x_’s) = (se'*'w" - ._l.e—"ﬁ")l‘(x,s),
dx s
D09 =1, Tixs)= 3 sM,x) (4.3)
I= —w
O0<|s| < c0.

Equation (4.3) can be solved straightforwardly, namely

Tix,s) = exp[f%;/—z[se‘ﬁ"’ 2 —;—e — i/ 2] ] (4.4)

Therefore, using the Bessel generating function
[Zh= 4 (x) =2~ /7] we easily find [sce also Ref.
(10)]

Ci(t) = (— i)fe =" 2],[2Q sin wyt /2/wo/2]. (4.5)

This is only a particularly simple example that shows that in
a few selected cases simpler and more direct techniques are
available. In any case when noncommuting operators are
involved with time-dependent coefficients, time-ordering
techniques, of the type discussed here, are a necessary step.
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) [Jioks2 () =Tx_2 ()],

)]J, () + %“ol/‘fﬁ)[(zl—l)l, eer () 4 @+ DI 1 ()]

(3.18)

ﬁA further point, relevant to the differential finite differ-
ence equation, that we want to touch upon is the fact that we
have discussed only homogeneous equations. We have not
mentioned inhomogeneous cases which may arise treating
perturbed solutions of nonlinear differential finite difference
systems [to givean example, ; C, /dt = Q(C;+1 +C;_ 1)
+ £|C, |% with £ an expansion parameter]. We want to give
a simple example that shows that even in this hypothesis
exact solutions can be found.
The equation we consider is the following:
dc,

l_dT_Q(Cl-c-l +Ci_y)+ file),

where f,(¢)is a generic function depending both on the time
and on the discrete index /.
It is easy to verify that the solution of (4.6) can be written

Cl (O) = ‘51,0, (4-6)

as
Ci(1) =Ci()
+w t
+ Y (=D Cl_(t=1t")f,(t)dt’, (4T)
m= — 0

where C(¢) is the solution of the homogeneous case
[Cre)= (=D 201)].

In a forthcoming paper we will apply all the previously
found results to particular physical problems.
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APPENDIX: A NOTE ON THE MAGNUS EXPANSION

The Magnus method has been discussed in the Intro-
duction but, in the following sections, we have been mainly
concerned with the Wei-Norman method, which has the
advantage of being more general.

We have exploited that method even for cases in which it
is not strictly necessary. In this way, however, we have
shown the intimate connection between apparently discon-
nected problems.

In this Appendix we will discuss some examples where
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the Magnus expansion directly applies.
We consider a Hamiltonian of the type

H=o0p%a+0@* +2) (Ai=1), (Al)

from which we can write down an interaction Hamiltonian
of the type

I‘\{int =Qet iwoxa*a(&+ + &)e— iwgrat
—_ ﬂ(a+e+i°’°'~+ ae-—iw(,t). (A2)
The equation of the evolution operator writes

dU

U _ b o =i A3
ldt int (0) (A3)

whose explicit solution, using the expressions (1.12), readé
A 4 i ’ 2
by = exp{i—‘f’z-"—fdt' ﬂ’(ﬂ'-‘-i"i—/l) }

(1]

@y/2
cop| — Lav(enes 2]
2 Wp/2
Xexp[ _ m(sin(wot/Z) A+ei(¢»ot/2)]
wy/2
o sin(wot/Z))A —i( 1/2)]
Xexp[ tﬂ(—-—-—————wo/z Ge — K@t /D) | (A4)

Using the above expression and assuming that we start from
the vacuum, we easily get the following expression' for the
evolution of |¢):

= 3 _&)—o ! (7' 2d ]
|#) I;oexp{z 5 Jola(r) 'd

X [(a(®))y ATT]e— temih2 1y, (AS)
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If we consider the Hamiltonian
H=oa%a+e@*a)* + Q@+ +a), (A6)
the situation is considerably more complicated than before.
However, following the same steps as before one finds
ﬁIint = m'+ flwA™a + s(&*h)‘)t(a+ +a)
XE™ ilwB*2 + e(a*a)?):
= Q{expli( —wo —e(28* a3+ 1))t 1a
+ explilw, + €(2a%a — 1))t 1a*+}. (A7)

If one is interested in a perturbed solution in €, the Magnus
procedure can be applied. The calculations are quite cum-
bersome, the Magnus series’’ must be calculated up to the
fourth term and the results for C; (¢ ) coincide, as they must,

~ with (3.13) (for further comments and details see Ref. 12).
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A unified treatment of Wigner & functions, spin-weighted spherical

harmonics, and monopole harmonics
Tevian Dray®

School of Mathematics, Institute for Advanced Study, Princeton, New Jersey 08540
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A unified, self-contained treatment of Wigner . functions, spin-weighted spherical harmonics,
and monopole harmonics is given, both in coordinate-free language and for a particular choice of

coordinates.

I. INTRODUCTION

We show in this paper that three independent general-
izations of the usual spherical harmonics on S? namely
Wigner & functions,' spin-weighted spherical harmon-
ics,>” and monopole harmonics®® are completely equiva-
lent.

It is well known that the Wigner & functions form an
orthogonal basis for L2(8?), the square-integrable functions
on S>. Monopole harmonics, on the other hand, form an
orthonormal basis for (square integrable) sections of (all of
the) complex line bundles over $°. A standard result from
the theory of fiber bundles (see, e.g., Ref. 10), however, as-
serts that these two concepts are entirely equivalent; this will
be discussed in more detail in Sec. II below. Thus, monopole
harmonics are equivalent to Wigner & functions. Finally,
spin-weighted spherical harmonics can also be interpreted as
sections of complex line bundles over S? and are therefore
the same as monopole harmonics. (This was checked in co-
ordinates by Dray.!') Goldberg ef al.5 showed directly that
the spin-weighted spherical harmonics are equivalent to the
Wigner & functions. Thus, all three of these concepts are
equivalent; this paper is devoted to making this equivalence
precise.

The paper is divided into two parts. In Part I (Secs. II-
V) we give precise mathematical definitions in coordinate-
free language of all three kinds of harmonics and establish
their equivalence. In Part II (Secs. VI-VIII) we repeat the
results of Part I in a particular choice of coordinates, thus
establishing a direct connection between the precise math-
ematical definitions of Part I and the standard literature,
which is mostly in the coordinate language of Part I1. Parts I
and II are written so as to be independent of each other; part
of the purpose of this paper is to serve as a dictionary
between the coordinate and coordinate-free versions of these
results. Some readers may prefer to skip Part I on first read-
ing. However, we feel that it is only in the coordinate-free
language of Part I that the fundamental nature of the equiv-
alence of the three kinds of harmonics becomes apparent.

The equivalence of the monopole harmonics to the
Wigner & functions is at least implicitly contained in Refs. 9
and 12 while the interpretation of the spin-weighted spheri-
cal harmonics as sections of complex line bundles, and thus
their equivalence to monopole harmonics, is also known.
However, several features of our presentation are new. Fore-
most among these is the fact that the standard definition of

* Present address: Department of Mathematics, University of York, York
YO1 5DD, England.
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spin-weighted spherical harmonics does not make explicit
the fact that they are sections of a fiber bundle.!* We inter-
pret the standard definition as defining spin-weighted
spherical harmonics to be functions on the (unit) tangent
bundle to S%; we make this precise in Sec. IV below and show
the equivalence of our definition to the standard definition in
Sec. VIIIL

For monopole harmonics the situation is somewhat bet-
ter in that the fiber bundle structure has been given explicit-
ly.' However, the monopole harmonics themselves have
only been given explicitly with respect to one particular tri-
vializing cover of the complex line bundles.®!* We introduce
the monopole harmonics in Sec. V as sections of the complex
line bundles irrespective of local trivializations. The explicit
coordinate version of both the monopole harmonics and the
spin-weighted spherical harmonics in an arbitrary local tri-
vialization (“spin-gauge”), given in Sec. VIII [ (175) with
(166) ], is new.

The definition of the Wigner & functions in Sec. III as
the matrix representation of SU(2) acting on irreducible re-
presentations of SU(2) in L?(S?) is also new. This is usually
done only for integer spin.'® Our approach has the advantage
that it can be done in a coordinate-free way, i.e., without
introducing a parametrization in terms of Euler angles.

Finally, one motivation for this work was the desire to
provide a self-contained, consistent presentation of these
three types of harmonics in order to eliminate the necessity
of worrying about which conventions have been used in the
three different sets of literature.'®

The paper is organized as follows. In Sec. II we intro-
duce the mathematical concepts and notation that we will
use throughout Part I. Sections ITI, IV, and V define, respec-
tively, Wigner & functions, spin-weighted spherical har-
monics, and monopole harmonics in abstract, coordinate-
free language. Each definition is compared to the previous
definition(s) as it arises. Finally, in Part II the results of Part
I are rewritten in coordinate language and related to pre-
vious work. Section VI reproduces the notation of Sec. Il in
coordinate language, while Sec. VII does the same for the
Wigner & functions of Sec. II1. Section VIII then discusses
both spin-weighted spherical harmonics (Sec. IV) and
monopole harmonics (Sec. V) in coordinate language.

Il. NOTATION

In this section we define angular momentum operators
and give the basic properties of complex line bundles in order
to fix our notation. The results are standard; our presenta-
tion is largely based on Kuwabara'” and Greub and Petry.!°
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Explicit coordinate versions of most of the results appear in
Sec. VI. The generalization of many of the concepts present-
ed here to higher-dimensional vector bundles over higher-
dimensional spaces is discussed by Guillemin and Uribe.®

Let the isomorphism of SU(2): = SU(2,C) and S° be
given by

T: SUQ2) > §° (1)
and let B € SU(2) act on 8 on the left via
p—Bp:=T[B(T 'p)]. (2)

The corresponding action of SU(2) on L?(S?) is (L? denotes
the set of square integrable functions)

f—D(B) f, (3a)

DB) fl, :=fls-1ps (3b)

D(B'B) f=D(B')D(B) f. (3¢)
Similarly, let 4 € SO(3): = SO(3,R) act on $? on the left via

x > Ax; 4
the corresponding action of SO(3) on L(§8?) is

g— D(A)g, (5a)

D(a)gl, :=8ls-- (5b)
Consider

U(l) ={H(A):A€[0,2m)}CSU(2], (6a)

H(a)H(b) = H(a + b), (6b)

H(A) =144 =0 (mod 27).
The Hopf bundle is defined to be the principal bundle
U(l)—-§°

7o (7
S2
where the (right) action of U(1) on $* is given by
ppet:=T[(T™'p)H(A)]. (8)

Thus, 7(pe*) = 7( p) and (B pe’*) = (B p). We there-
fore get an induced map

#: SU(2) — SO(3),

#(B)w( p) = m(Bp).

We will assume that the U(1) subgroup of SU(2) in (6)
has been chosen so that the Chern class of the Hopf bundle is
[R], where R = — (i/2)Q and Q is the volume form on S2.
Thus the Hopf bundle has Chern number

$ =41 (10)

sz

instead of — 1 (the only other possibility). [ This can always
be achieved by replacing H( A) by H( — A) if necessary. ]

We wish tointroduce abasis A, € su(2), the Lie algebra
of SU(2), which satisfies

[Aa’Ab] =€ab¢Ac’ (1

where the indices run from 1 to 3 and ¢,,, is the totally
antisymmetric tensor defined by €,,; = + 1. However, if we
define

B.(1) :=exp(rA,) e SU(2), (12)
for A, satisfying (11), then S, is periodic in  with period 4.

9
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We define

. 4(-3)
Ay i=— H| —— 13
? dT =0 2 ( )

(the minus sign is conventional) and choose A, and A, so
that (11) is satisfied; note that we now have

H(A)=pB(—24). (14)
Introduce angular momentum operators on S* via
J.: L*(8%) — L*(8?),

d (15a)
Sfi— OD(B,,(T))/Z
ie.,
Lfl,=—i2% Floirrpe (15b)
P dT re0 alT ) P
Then we have
[Ja",b] =i€abc"c' (16)
Define
JZ:=ZJ§,
’ %))
Jﬂ: :=J1:|:i|’2.

Then [compare (131) below] J? = — } O,, where [, is the
standard Laplacian on $°.
If we now define angular momentum operators on S2 by

7, : L3(8%) - L3(S?),

g—i2| D, (r)e (18)
=0
where a, (1) : = #{ B, (7)), then we have
Jaglw(p) EJa (go 7T)| P [gELz(Sz)]' (19)

Note that J, and J, are Hermitian operators.

The complex line bundles E, associated with the Hopf
bundle can be defined as follows. Let U(1) act on C via
multiplication, i.e.,

C—C,
(20)
z—> ez,
Define ,
Q3
E, :=$X,C an

where the square brackets denoté equivalence classes under
the relation

(P, Z) -~ (peu)eiMz); (22)
E, is a fiber bundle over S* with fiber C,

E,
| 7., (23)
§? :
and there is a U(1) action on E, given by
[(p,2)]— [(pe*, 2)]. (24)
The projection 7, is given by
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”n([(P)z)]): =7T(P)- (25)

Thereis a natural connection on E, (Ref. 19) so that the
curvature of E,, is [see (155)]

R, = — (in/2)Q, (26)
where § is the volume form on S?, so that the Chern number
of E, is [compare (10)]

iR,
s: 2
We will assume throughout the remainder of the paper that
this connection has been chosen.?
There is an existence and uniqueness theorem which

says that a line bundle over $? with curvature R exists if and
only if

(27)

= +n.

iR
—€Z 28
§ 2 (28)
and that this bundle is unique up to strong bundle isomor-
phism.
Let
F,:={feC=(8%) :f pe*) = e™ f( p)}. (29)

Given any fe F‘,, we can obtain a C * section o, of £, by

Uf H SZ—PE",
(30)
x> [(p,f(P)],
for any p such that 7( p) = x. Denote by Q the map
(/) :=o;. (31

Note that @ is one-to-one: A C * section o, uniquely deter-
mines a function £ on S via (30) which much be in F, in
order to be well-defined. We write the inverse mapping as

for=Q7 (o). (32)
Given any smooth (C =) local section

U, C8?

VU, -8, (33)
wo ;A =1

of the Hopf bundle we can interpret a sectiono e I', of E,, as
a function

&=/ 0;4 eL*(U,). (34)

For x € U, and sections o, 7 of E, we define the scalar
product

(0,7)s i = fo(Pa (X)) - £ (Fa (X)),

= g8l (35)
Note that since f,, and f, are both elements of F,, the norm is

independent of the choice of local section ¢, solongas x isin
the domain of definition of ,. We can now define

{o7) : = iz {o0,7), dx.

Note that Q is not an isometry but satisfies [ compare (144) ]

(L) = (@/2){Q(N,2(N). (37)
Thus, if we define F,:=7F,nL*S% and let
T, : = L?*(8* > E, ) denote the set of square integrable sec-

(36)
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tions of E, , then Q clearly gives a one-to-one correspondence
Q:F,—>T,. (38)

We can now introduce angular momentum operators
L,onT, via

L,0:=0, (0 ') (39)

For the connection chosen above [compare (26)] the La-
placian on T, is [see (157) below]"!®

A, = —L2+n%as (40)

lll. WIGNER 2 FUNCTIONS

Wigner' introduced the functions &/, as the matrix
elements of finite rotations acting on irreducible representa-
tions of the rotation group [SO(3)]. Our presentation is
largely based on that of Edmonds.? Other standard refer-
ences are Rose® and the more modern treatment given by
Biedenharn and Louck.*

We can define an irreducible representation of SU(2)
on § for each / as follows.

Choose ¢, € L*(S*) with

T2y =10+ D)y, Jady =18y, (41)
and define
Gi_w=[QRI—n+ D] _¢,_ .., (n=12..2]).

(42)

Then

SsPim = MBns (43)

Jibm=[UFm)Utm+ 1], .1, (44)
and

(Bt sB1m ) = (DusB1) O B i » (45)

where (-, . ) denotes the L2 norm on $°. Note that since
[J2,J_] =0, (42) implies

J2¢lm = l(l + l)¢lm; (46)
this also follows directly from (43) and (44). From (43)-

(46) we see that there is a (matrix) representation of SU(2)
on the vector spaces

W':=Span{¢,, :0</— |m|eZ}, (47)
for each /. The representation is irreducible because W' is
generated by the action of J_ on ¢, [see (42)].

We can now define the Wigner & functions to be the
matrix representation of SU(2) acting on W

DB):W'> W',
(48)

¢lm = 2 ¢lqg£m (B)
q

with D(B)as in (3). Note that this construction is indepen-
dent of the choice of ¢, satisfying (41).

Before deriving the properties of the Wigner & func-
tions we first show that, for integer spin (! € Z), our defini-
tion is the same as the usual one in terms of spherical har-
monics on S°. We can introduce the usual spherical
harmonics on $? via
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?SYIM =m}'bH’
T Y =0 FmU+m+ 11T, ,,
( Ylm’ Yl'm’> =6II'5mm’

(leZ, 0<I—|m|eZ)

(49)

and a choice of phase for each /, where 7 1= ?1 + 1272 and
the norm is now the L? norm on $2 Defining
Yom : = Y, © m€L?(S?) wesee that the Y}, satisfy (43)~
(46) and thus

D(B) Y{,m = 2 Y{,q.@;m (B). (50)
q
But
D(B) Y(I)m |p = Ylm ° ”lB“p
=Yim |mn~‘)1r( P
= D(#(B))Y,, °m,
and therefore
(51)

D(‘ﬁ.(B))Ylm = z quglqm (-B)a
- q
which is equivalent to the standard definition of the func-
tions 2., in terms of SO(3).

We now establish the various properties of the /.
From (45) we have

<¢” ’¢II >5II'5mm'
=$ B Vb (p1S
sJ

E£3 ¢Im (B_ P) 'm (B—lp)ds

=30 ¢,(p D, (B oy (P) D, (B)dS
a9 s?

S DL, (B) D, (BY$usbu)
q

and therefore

z @q’m(B).@f,m. B)=6b,,-
q
From (3c) we also have

(52)
Dyn(B'B) =Y D, (B")D,,, (B). (53)
Setting B’ = B ~! and relabeling indices we get
B = Dy (B~1) D, (B), (54)

q

so that we finally obtain

. (B) =2 (B™Y). (55)

In other words, the matrix (2'),, = 2., is unitary; .

(@H~'= (PN
Define the operators L, and K, on L%SU(2)) via

. d
Lh|g:= —io| B lg.crrms (56a)
784 J. Math. Phys., Vol. 27, No. 3, March 1986

Khlpi=+i-L|  hlmer (56b)
d T=0 .
where & € L%(SU(2)). We then have
bulle DL (BY) = —i-L| 4, D! (B.(r)B)
dT T=0
=—iL|  Dp(a.(r)BN,
Tlr=0
= —J, [D(B)¢,] 57
whereas
bo(K. D (B =i-L| g, D! (BB, (1))
dT r=0
=il Dp@aW,
Tlr=0
=D(B) [ty ]. (58)

Using (43) and (44) it is now easy to compute
L3g;m = - qgém’

L @l _—[(I:t 1/2 gyl . (59)
+ am — q)(l :Fq+l)] gq:Fl.m’

K3'@;m = m.@;m, (60)
K, 2, =[0dFm)Itm+1)]1'2D! . ;

where L, :=L,+iLl,and K, : =K, +iK,. Note that
both L, and K, satisfy the usual commutation relations,
namely those satisfied by J,, and that L? = K 2.

From (59) and (60) we see that the ', are orthogo-
nal, i.e.,

<@Lm’gl'm'> = 6"'5qq'5mm’clv (61)
where the norm is the L? norm on SU(2) and where

C,:=(2!,9}). [Note that by (59) and (60) the norma-
lization depends only on /.] But from (52) we have

2 (@;m,.@fm) = 272, (62)
q

so that
C, =2/l +1) (63)

[which shows that Z,,, e L%SU(2))].

Note that L2(S?) is of course isomorphic to LSU(2))
via

T*:1L%(S%) — L*SU(2)),

(64)
frofoT.
We thus define
'@Lm =T, .@;,,,,
=9,,°T 'eL¥8?. (65)
Under this isomorphism we have
L, (foD)=J,f°T, (66)

and we see that the matrix representation of SU(2) on the
space spanned by the @;,,, for fixed / and m [given by (59))
is not the same as the matrix representation of SU(2) on W'
[given by (43) and (44)]. We can fix this by defining
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Yim(B): =+ /4r 2", (B7"), "
=JQI+ D/4r 27, _,(B),
and
g =@l 0T leLX(s), (68)

where the factor /(2] + 1)/47 has been added for conve-
nience.
Note that

d
L% imls= —IZ _

—i 2I+li
47 dr

. ’21+1 d

= 1 —_—
+ 47 dr

Y om
Y om| pr>m

—qml[B.(f)B]"
7=0

lJ
g—ﬂ’" |3_'ﬂ.(f)’

7=0
so that
L%l =VRI+1)/4r K, D'__, |5 (69)
and similarly
K.Y s =JQI+D)/4r L, 2D'_,,|5-. (70)
Thus
L3@zm =m@;m,
(71)
L% =lUFmI+tm+1D)]"VF,
K3@;m = +q@qm’
(72)
K, %= —[UFDU+q+DI’F,
and
<@qm’@5m'> = (11'/2)5”:5" 6 (73)
The matrix representation of SU(2) on the spaces
w,:= span{@q,,, :0<l— |m| eZ}, (74)

for each ¢(0</ — |g| € Z) is now precisely the same ason W'
and there are 2/ + 1 spaces W, for each . Using the Peter—
Weyl theorem?' we conclude that

L%(S*) = e w., (75)
and that {y2/7% 4m } therefore forms an orthonormal basis
for L?(S?). The Wigner & functions {9 } thus form an
orthogonal basis for L2(S%).
We now derive a property of the %
in what follows. Note that

+m that will be crucial

L% ymlpucry = Lo (%}, (BH(A))), (76)
but that
Ko om a1y =ii am BB B,0r) s (7
drl.- N
which, in general, is not equal to
Ka(@;m(BH( '1))) = idi o ;m |sp,(/1)11(-r)-
(78)

However, since [ 85(7 ),H( A)] = 0 we see that we do have
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K3 ¥ ol snay =Ks( Yo BH(A))). (79)

But since the %}, are fully determined by their eigenvalues
with respect to L 2, L,, and K, and since they form a basis for
L?(SU(2)), we conclude that

Y. (BH(A)) =c(A) ¥, (B), (80)
where ¢ may depend on (/,¢,,m). Finally, using (14) we have
'q@;m |3 = K3@zm s

—; 4 -
dT e gm BB, (A)
i d
= —E‘H im0 ;mlBH(/l)'
Thus

d ,
— c(A) =2ig, 81
dAli=o (D) 7 (81)

which, together with ¢(0) =1 and c(a + b) =c(a)c(b)
[which follows from (6b) ], implies c( 1) = €*94, so that

Y om(BH( 1)) = 4%, (B) (82)
and therefore

Yiom (D) =Y (p), (83)
ie, ¥ ! € By Infact {y2/7 %, } for fixed ¢ clearly forms

an orthonormal basis for F,,. We can now write (77) as (79)
together with

K, ¥ o lsucsy =€t K (¥ (BH(A)). (84)

IV. SPIN-WEIGHTED SPHERICAL HARMONICS

Newman and Penrose® introduced spin weighted
spherical harmonics in a particular choice of spin gauge.
The (trivial) generalization to an arbitrary spin gauge (for a
particular choice of coordinates) can be found in Dray.!! (A
spinorial definition has been given by Penrose and Rindler.”
See also Refs. 22 and 23.) Consider the complexified tangent
bundle

T.8*:=TS8* e C

, (85)

SZ
and let m be a (complex) vector field on S, i.e., a local
section of the tangent bundle

m:U—>T.8 (UCS8?), (86)
which satisfies

(mm) =0, (m,m)=2, (87)
at each point of U.

A quantity Q is said to have® spin weight s [we write
sw(Q) = s] if under the transformation

m— é*m, (88a)
Q transforms according to
Qr> Q. (88b)

What does this mean? We interpret this imprecise definition
as follows.

Consider the space ¥ consisting of all elements v of T S>
satisfying (87). There is a natural decomposition
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V="V,uP, (89a)
where for any v, € V, we have
Vo=1{e"vy; x:8°— [02m)}. (89b)

Note that ¥, is a subbundle of the tangent bundle (85), i.e.,

. (90)

Furthermore, since we have a natural U(1) action on ¥,
namely

Vo— Vo v e, (91a)
and since
(M) = 7(v), (91b)

V, is clearly a circle bundle over S%. But since ¥, @ R is
equivalent to the real tangent bundle 7'S* and since TS is
bundle isomorphic to E, there is a fiber-preserving isomor-
phism?*

(92)

7 Vo—z>83, (™) = g(v)e't.

We therefore interpret “quantities of spin weight s” to
" befunctions on ¥, i.e., elements of L?(S?), with a particular
behavior under the circle action. We must, however, be ex-
tremely careful here: The vector field m in the usual defini-
tion of spin-weighted spherical harmonics has a definite be-
havior under the circle action, so we are not free to specify
this independently. We claim that the correct choice is to
require m to behave in the same way as X, under the circle
action, namely [compare (84)]
(93)
[so that x=2A in (88)]. We will see below [compare
(177c)] that this correctly reproduces the standard defini-
tion in coordinates.

We thus define a “quantity of spin weight s” to be a
function

m—et3iy

fV—>C (94a)
satisfying
F(é*v) =et?*f(v). (94b)

We can turn finto a function f: =fo 7! on $°, and we
therefore define spin-weighted functions on $° to be elements
fof L?(8?) satisfying

f(peil) Ee+2ix/1f(p),

i.e., fe€ F,, for some s, and define s to be the spin weight of
Sf(sw( f) =s). But note that from (83) we have

(95)

sw(Z,) =4, (96)
so that {#/,, } for fixed g forms a basis for the functions of
spin weight ¢ for 2g € Z. We call the @ m Spin-weighted
spherical harmonics on $°.

Note further that, for integer spin (I € Z), (72) implies
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_ 172
g+q;: (—DYUKL)F,,  (0<g<D),
l/2
(itq;: - UK T, (- I<q<0),
(I<lg),
97

which is equivalent to the standard definition of spin-weight-
ed spherical harmonics for integer spin.

V. MONOPOLE HARMONICS

Greub and Petry!'® were the first to introduce the idea of
using a Hilbert space of sections of complex line bundles to
obtain a description of the Dirac magnetic monopole which
is free of string singularities. Wu and Yang® independently
discovered the same idea and gave an orthonormal basis for
this Hilbert space (with respect to a particular trivialization
of the bundles) which they called monopole harmonics. (A
combined treatment of these two approaches can be found in
Biedenharn and Louck.’)

Consider the electromagnetic field FofaDirac magnet-
ic monopole of strength g located at the origin. The field Fis
a spherically symmetric, time-independent two-form over
R* so it is sufficient to consider the pullback F of F tos2
Then we have

F=gQ, (98)
where ) is the volume form on S?, i.e.,
45 Q= 4. (99)
SZ

Maxwell’s equations imply that F is closed, i.e., dF = 0, but
we do not assume that F is exact, i.e., we do not assume that
there exists a globally defined vector potential 4 satisfying
dA=F.

The Schrddinger equation for a particle with electric
charge e and mass m moving in this field can be written

131//——5—(32+ 9, +4 )¢,

which we interpret as follows. Make the ansatz
y=e""p
where o is a section of the line bundle over $? with curvature
R = — jeF (see Ref. 25). Then A represents the natural La-
placian {compare (26) and (40)] on this bundle. The
Schridinger equation now becomes
PQ2mEp +p" +2p'/r)a= —p(Ao), (101)

8o that the angular part of the wave function, o, must be an
eigensection of A.

For the line bundlé with curvature R = — ieF to exist
we must have [see (28)]

iez
2r

which is just the Dirac quantization condition
2egeZ;

(100)

(o,

(102)

(103)

o is thus a section of E,, for ¢ = eg. We thus have [see (40) ]
A=A, =—L2+¢ (104)
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so that eigensections of A are also eigensections of L2 Weare
only interested in sections o that are square integrable, so
that o € T,,, and thus Q ~'o € F,,. But we have seen that
& ! w1} forms a basis for F,,. We are thus led to define the
monopole harmonics

Y =QZ ) €T, (105)

The monopole harmonics can also be defined intrinsi-
cally by the conditions

@qlm € F2q ’

2% o =1+ DY,
(106)

A
L3@qlm = m@qlm’

(gqlm ’@q’l ‘m’ > = 811’ 6qq’ 6mm' 5
these follow from the definition (105) together with (71),
(73), and (37).

We thus see that the monopole harmonics are complete-
ly equivalent to the spin-weighted spherical harmonics on
$°, where the equivalence is given by the mapping Q.

VI. COORDINATE NOTATION

In this section we introduce a particular coordinatiza-
tion of SU(2) [and thus also of SO(3) and $°] in terms of
Euler angles. We then introduce the complex line bundles
over $” and angular momentum operators in terms of these
coordinates.

The group SU(2) : = SU(2,C) can be defined as the set
of 2X 2 complex matrices satisfying

B '= B', detB=1, (107a)
or equivalently
B=( @ f) (ad@ + bb = 1). (107b)
—-b a

Similarly, SO(3) : = SO(3,R) can be defined as the set of
3X 3 real matrices satisfying

A '=A4", detd=1. (108)
We choose the parametrization for SU(2) given by
a=cos(B/2)e Ar+ara,
(109a)
b=sin(B/2)et 1 r— =72,
where
Bel07], ae[02r), yel[04r); (109b)

we write B(a, B,y) for the matrix so determined.?®
We consider $* to be the subspace of C2 defined by

S3:=[(Z)GC2:uE+vﬁ=l}. (110)
We choose the parametrization
u = cos(6/2)e 1¥+H72),
(111a)
v= —sin(f/2)e " 1¥-#2,
where
0e[07], $e(02m), el04m); (111b)

we write (8,4,¢) for the point so determined.?® The isomor-
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phism between SU(2) and S* can be given as
T: SUQ2)>S,

B(a, By) — (Ba,y), (112a)
or equivalently
a b a
(_z a)*(_z)' (112)
The metric on S* is now
ds’:=dudi +dvdv
= 1(d0?% + d¢* + dy? + 2 cos 0dp dy),  (113)

so that the Laplacian on S* is given by

1 1
0, =4{3d2 t 03 a2 a2
d ( s+ 00 9+sin20 ? 7 sin28 7
2cos @ )
— a3 114
sinf@ ? ° (114)

We consider S? to be the subspace of R* defined by

(115)
z

x
§?:= (y)eR3:x2+y2+zz=l

and we choose the usual parametrization in terms of spheri-
cal coordinates

(116)

where 6 and ¢ have the same ranges as in (111b). Consider
the elements H( A) of SU(2) defined by
+iA 0

H(M:=(eo e 4

Then {H( A) : A € [0,27) } is isomorphic to U(1) so we can
define the Hopf bundle via

x+ipy=e?sinf, z=cosb,

)EB(O,O,—ZA). (117)

U(l)—83
‘17', (118a)
SZ

where the projection is the obvious map

or equivalently
Re( — 2uv)
(“)H Im( — 2@v) (118c)
v uii — vp
and the circle action is defined by
(6.9,9)e'* : =T (B(6,¢,¥)H(A))
(118d)

= (6,49 —24).

From (118c) we see that we get an induced map

#:SU(2) — SO(3) (119a)
which can be defined by
ﬁ'(B)ﬂ'((p)) Ef(B(P)). (119b)
q q

Direct calculation shows that under this map we have
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. B Re(a* - b2 Im(a®*+b?  Re(2ab)
ﬁ':(__z E)H — Im(4? '—bz) Re(é>+b%) —Im(2ab)], (119¢)
— Re(23b) Im(23b) aG — bb

- so that
A(a, By) : = HB(a, B.y))

cos a cos 3 cos ¥
—sina sin y

— cos @ cos Bsin ¥
—sinacos ¥

=] sinacosBcos ¥
+ cos a sin ¥

— sin & cos Bsin ¥
+cosa cos ¥

—sin B cos ¥ sin f sin ¥

Noting that A(a, 8,y) = A(e, B,y + 2m) we can choose the
parametrization of SO(3) to be given by (119d), where?*®
Be[0m], ael027), ye[027). (119e)

Definea, (7) € S0(3),a = 1,2,3, to be the matrix which
rotates S? about the ath axis counterclockwise through an
angle 7. Thus

1 0 0
a,(7) =10 cos7 —sinT

0 sinrt cos T

cost O sint
a,(r) = 0 1 0 |=A4(0,7,0), (120)

[

y (_31,7,1) ,
2 2

—sint 0 cosr,

cosr —sinr O
as(r) = sinr cos T 0 |=A4(0,0,7).

0 0 1
Note that

A(a, By) = az(a)a,( Blas(y), (121)

so that the parametrization (119d) of SO(3) isjust the usual
one in terms of Euler angles: 4(a, B,y) is the element of
SO(3) that rotates the sphere $* first by ¥ around the z axis,
then by B around the (original) y axis, and finally by
around the (original) z axis. We wish to find matrices
B. €SU(2), a = 1,2,3, satisfying

B (7)) =a,(r). (122a)

Although # is a fwo-to-one mapping, the additional require-
ment that

B, (0)=1 (122b)

determines the S, (7 ) uniquely as

_ pf3m 57\ __(cos(r/2) isin(r/2))
Al _B( 272 )"(isin(r/z) cos(r/2)/’

_ _ cos(r/2) sin(r/2)
Arlr) = BO50) "(—sin(r/z) cos(r /2y (1%

e—ir/l 0

ﬁ}(‘r ) = B(O:O"r) E( 0 e+h,/2) .

From (109) we see that the general element of SU(2) can be
written

Bla, B,y) = ps(a) B B) Bs(p).
Note that (121) and (124) imply

(124)
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cosasinff
sin & sin B (119d)
cos B
A(a’BSY)—l EA( il £} —B’ _a)’
(125)
B(“:ﬂ.}’)_l EB( €3 _B’ —a)
Define
Aa = —d_ ﬂa (T )’ (1268)
dT r=0
~ d
A= ar) (126b)
dT =0

and notice that both A, and X‘, satisfy the commutation re-
lations (11).7 Note that (13) and (14) are also satisfied.

We now intoduce angular mometum operators. Using
the chain rule the definition (18) of angular momentum on
§? is equivalent to

5
Jg=+itx y A, |9, |, (127)
. 3.
which yields the familiar result
J=—id,,
(128)

T, =e*®(+dy+icot83,).

Similarly, the definition (15) of angular momentum on $* is
equivalent to

- (9, 9
Jaf= +i(u U)Aa (a ).f'"i-i(E l-,l)Aa (a_)-f’ (129)

which yields

J 3= — i a¢,

(130)

J, =e*®+ 39, +icot83d, — (i/sin§)3d,)
so that

Ji:=J} L+ J = -0, (131)
Both of these operators satisfy the standard commutation
relations (16), e.g.,

[ods]= 27,
(all others zero).

We now introduce the complex line bundles E, over $2

associated with the Hopf bundle (118). The points of E,, are
equivalence classes

[(8¢.4:2)) eS*%,C

Ve J 1=2J, (132)

(133a)
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under the equivalence relation

(6.8.432) ~ (0,69 — 2 A" 72). (133b)
We thus obtain the line bundle
E,
‘m , (134a)
S2
where the projection =, is given by
7, ([(6.4,%:2)]) : = (6,4). (134b)

There is a one-to-one correspondence @ between
(smooth) functions on $? satisfying

F(0,6,4) = e~ ""2F(6,4) (135)
and (smooth) sections

0:$* > E, (136)
of the line bundles E,, which is given by

Q(f)(6.4) : = [O7.9.f (6,8,))]. (137)
We will use the notation

o f)=:0, Q No)=:1,. (138)

Given any (smooth) local section?®

U, C8,

ViU — S, (139)

(6.4 — (66,74 (6:6))

of the Hopf bundle we can interpret any section (136) of E,,
as a function on U, via

g;:-:fao;/A

—-i(n/2)'yAF
o

(140)

=e

where F, is defined from £, asin (135). There is thus a one-

to-one correspondence Q, between (smooth) functions on

U, and (smooth) sections of E, (restrictedto U, ), whichis
given by

Q) :=0 (o) oy, =g5, (141)
ie.,
Q. (F) = [(6ghe""P¥ "R ], (142)

There is a natural norm on the space of sections (136) of
E, given by
(o,7) :=§ F F. ds. (143)
sz

Note that for o,7 both sections of E, we have [compare
(371

(fonf) = | Fof,ds

27
EJ'" f JM FF, Linododsay
9=0Jp=0Jyp=0 8

144)
= (n/2){o,7). (

Given any operator Z on the space I',, of square-integra-
ble sections of E, we can obtain an operator on L*(U,)
defined by
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Z4:=Q '0ZoQ, (145)
and this is clearly a one-to-one mapping of the correspond-
ing operator spaces. Here Z # will be referred to as the opera-
tor a with respect to (the section of the Hopf bundle) Yar

We can introduce angular momentum operators L, on
T, via

Lo:=QU,(Q ')
and thus obtain the operators?®
Li= —id, + (n/2) 3474,
L4 =e*®(+0d,+icotdd,
— (n/2)((1/sin §) Fidpy, + cot 03,7,4)),

(146)

(147)
(Lz)"=—lj‘+nc°saL‘ n?
2" sin?6 4sin20 "’
on L2(U, ), where
O : =0, +i(n/2)(O,,)
+in[(3e¥4) 9o + (8,7,4)9,/5in* 8 ]
— (B*/4)[(Bo¥4)? + (8,7,4)*/sin* 6 ] (148)

is the operator obtained from 00, by the substitutions

Fp > 30g +i(n/2)(Fs74), (149)

8y > 8s +i(n/2)(8,7.4), (150)
where O, denotes the Laplacian on S

The natural connection on E, is given by'%!

do= Qe ""PYdF, +i(n/2) f, cos 0dg), (151)

where d denotes the exterior derivative on S2. The connec-
tion one-form w? of the bundle E, with respect to 7, is de-
fined by

d[(087sD] =: [(Od701]. (152)
But
QH[Bpr])=e VP TY (153)
so that
wf =i(n/2)(cos 8do +dy,). (154)
The curvature E,, is thus
R, =duo?
= —i(n/2)sin 6d0 Nd¢ (155)
= —i(n/2)Q}

as desired [compare (26)].
The Laplacian A, on E, associated with the connection
(151) can now be defined as follows:

A, :=Q,°A%0Q7", (156a)
where'”
Af =0, + 2g8%(@1), Vs + 2V (@7)s
+ (@8)a (@3)5), (156b)

where g, is the standard metric on S? and V,, denotes covar-
iant differentiation on §? (so that [, = g**V, V, ). Inserting
our choice (154) for the connection w in (156) we obtain

Tevian Dray 789



ncos @ n? cos? 6
M= B - L T awe (1572)
so that
A, = —L%+n¥a4 (157b)

Vil. WIGNER 2 FUNCTIONS

We now introduce the Wigner & functions'™ as the
matrix elements of finite rotations acting on irreducible re-
presentations of the group SU(2).

We introduce irreducible representations of SU(2) on
S3 as follows. For (¥) € $° define

) uI—muI+m
¢Im L=

TS (0<2/eZ, 0<I— |m|eZ).
—m)i({ + m)!

(158)

It is easy to check that ¢,, € L*(8%). The operators J,
[(129) and (130)] when acting on ¢,,, take the form
Ji=4wd,—ud,), J,=vd,, J_=ud, (159)
and direct calculation shows that Egs. (43)-(46) are satis-
fied so that there is an irreducible matrix representation of
SU(2) on the vector spaces W' defined in (47). We define
the Wigner & functions by (3) and (48) and write

Do (@, BY) : = D (B, BY)). (160)
Then the 9., (a,B,y) of course satisfy properties (52)
through (55), in particular,

9 (a’B’Y)Eginq(_T:

qm
where we have used (125).
We now turn to the angular momentum operators
L, and K, defined in (56). From (66) and the expressions
(130) for J, it is clear that

L3= '—'iaa,

-8B, —a), (161)

(162)
L, =e*™(+3,+icotBd, — (i/sinB)d,).
We derive expressions for the X, as differential operators by
noticing that, using the chain rule, definition (56b) is equi-
valent to

a, d;
KahE + i(a b)A (ab)h+t(a b)A (ab) ’ (163)
which yields
K3= +iay’

(164)
K, = —e¥"+ 8, + (i/sinB) 8, —icotB d,).

Using (59)—(61) and (63) one can show that®®

D! (a,By)

d+m)l—- m)!]'/2 (sin g)”
U+ —g)

2

Roax I+q)(ﬂ l—q ) Itm—n
<3 (30610

Xe~4cot(B/2) )~ ™9~ imY, (165a)
where
Pin =max(0,m +q), ny,, =min(l + g,/ + m).
(165b)
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Defining &%, via (67) and (68) we thus obtain
@ (6.4.9)

_[U+id -2+ 1) "2(Sinf_)2’
(I + m)l(I — m)!(4m) 2

X };m(1+m)(k+qmm)(—1)"Q~k

Xe + tm¢(c°t(0 /2))21: +q— my— iqy‘:’
where

(166a)

Kpin = max(0,m — q), kg, =min(/ +m,] —gq).

(166b)
The properties of the %, are easily obtained from (71)-
(73) using the isomorphism (64). Define the operator §
(“edth”) on L%(8?) by

8f:= —K, (foeT)oT! (167a)
[compare (66); the minus sign is conventional ] so that

8f=K_(foT)oT™\. (167b)
Explicitly, we have
8=e~"Yd, + (i/sin 6)d, —icot63,), (168)
3=e*"¥3, — (i/sin 6)d, +icot §3,)
and
[8,8] = —2id,. (169)
Then we have
J3§/fm =m§/;,,,,
N (170)
J. Y —.[(I$m)(1j;m+l]”2€?/q,,,i,,
13,,@",,,, —q@/qm,
3, =U-—U+qg+ 1)1”’@q+w (171)
39!, = —[U+U—q+DIVF_,,
and
(DL Ty = (1/2)81:8 1 B s (172)

so that {y2/7% ! » } forms an orthonormal basis for L*(S°).

Comparing (128), (130), (170), and (172) we see that
we can define the usual spherical harmonics on S to be
[compare (49)]

Y,,(0,8): =% (6,4,0) (I€Z 0<I—|m|eZ). (173)
Viil. SPIN-WEIGHTED SPHERICAL HARMONICS AND
MONOPOLE HARMONICS

Having defined the functions #/,, € L2(S°) in terms of
Wigner & functions we now show how to obtain the usual
coordinate definitions of both spin-weighted spherical har-
monics and monopole harmonics. We first note that by com-
paring (166) and (135) we see that we can define a section
Y um of the line bundle E,, by (105) so that [compare
(137)]

Y im (0,8): = [(0:8,4;F ;. (6,0,0))].
The &, of course satisfy (106).

Given a local section of the Hopf bundle defined by the
function y,€ L*(U,) and (139), we thus obtain the func-
tions [compare (141)]

(174)
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:Im (0’¢) L= QA— 1(@qlm )
=7 (0.6:7.(6,))

= TONG! (6,4,0)eLX(U,). (175)
The properties of the % 4m are completely analogous to
those of the @/q,m, i.e., (170)~(172). Before giving them
explicitly, however, we need to introduce an operator on
sections of E,, analogous to 8 . We do this by defining [com-
pare (146)]

8: Fn _)Fn+2’
176
= — QK. (@ o)) (1762)
and
8: T.>T._. (176b)
do:= +QK_(Q '),
so that [see (145) ]!
6A=e_i7"[ag +“_a
sind *
+%(—cot0 +i0g¥4 ——gx-i—ea,,y‘)], (177a)
A ralg J 3
8 ¢ [ ® sing *
——(—-cot@—zagyA —ﬁam)] (177b)

_ 172

%I%] (347, (6,6)

:lm (6’¢) =
(—g)
0

where defined [i.e., for (68,¢) € U, ]. But the standard coor-
dinate definition of the spin-weighted spherical harmonics
for integer spin is just®!' (183) in the “standard” spin
gauge*?

Yo(6,8) : =0, (184a)
so that™
q I’Im = @21". (09¢) = @;m (0,¢,0)
= 2’4: L (640 (184b)
In an arbitrary “spin gauge,” (175) implies*
Vin08) = [ 2 2 L D _647.69)

=e  MOPY0 (6,4). (185)

One normally defines the spin-weighted spherical harmonics
in standard gauge for half-integer spin by (184). Thus, the
standard spin-weighted spherical harmonics are just the
% inaparticular (dense) trivialization of the line bundles
E,, [namely the one induced by (184a)].

The monopole harmonics Y, are even easier. They are
defined by®*!! (179) and (181) (and a choice of phase for
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172 . -
M] (= 1)U, (6,4) (—I<q<0),
(I<|q]),

The vector m of Sec. IV is given by'!

m=e~ "3y + (i/sin 6)3,), (177¢)

where the choice of the function ¥, (6,¢) is referred to as the
choice of a spin gauge. Note that since

oell', =0l _,, (178a)
we have
3o = 3. (178b)

The properties of the %4, are thus [compare (169)-
(171)]
Li%t,, =m%4,, (179)
Ly % =lUFm)U+m+ )]y

VY om =lU—)U+q+1)]'"274,

Y = — [U+9)(I— g + 1)] 24
[aA aA]@qlm = —Zq@qlm'

Furthermore, if ¥, is chosen so that its domain of definition
U, is dense in S, then (172) becomes

§@q,m<e¢)@,mw,¢) 811 Boq Srum

Finally, note that for integer spin (leZ), (173) and (175)
imply

glm+15

(180)

qg—1,lm»

(181)

Yim (0,8) =Y, (6,4) (182)
and that from (180) we now obtain [compare (97)]
(0<g<D),
(183)
r
each /) in the gauges*?
ya(6’¢) L= _¢’ Yo (0,¢) = +¢ (1863,)
With an appropriate choice of phase we have®”
Yom =%am Yom =Yg (186b)

so that the monopole harmonics Y_,,, of Ref. 8 are just the
¥ um in a particular trivializing cover of E,, [namely the
one defined by (186) (Ref. 32)].
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from Ref. 6 by a factor ( — 1)%.

34The factor ( — 1)*in (28) of Ref. 11 is thus incorrect.
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Screen observables, which measure the arrival coordinates of free particles at a hyperplane
containing a timelike direction, are defined by a covariance property with respect to an irreducible
representation of the Poincafe or Galilei group. For each representation with m > 0 the set of
screen observables is constructed explicitly and a unique ideal screen observable of greatest

intrinsic accuracy is singled out.

I. INTRODUCTION

It is well known that the classical concept of particle
trajectories has no proper analog in quantum mechanics.
Only the position of a particle at a single time is usually
considered as a quantum mechanical observable. This limi-
tation seems strange in view of the standard laboratory tech-
niques of particle detection; whereas the measurement of
“position at time ¢ > would somehow require the instantan-
eous construction of a trap for the particle, measuring de-
vices like counters, photographic plates, or scintillating
screens are usually made sensitive for a long time interval
during which the arrival of the particle is expected. The arri-
val time itself, or the time at which the detector responds, is
often considered an important part of the information. The
purpose of the present paper is to show how such measure-
ments may be given an idealized description within the
quantum mechanical formalism.

Observables describing the joint measurement of arrival
time and arrival location of a particle at a screen will be
characterized by a covariance condition with respect to a
given irreducible representation of the group of (relativistic
or nonrelativistic) space-time symmetries. Further condi-
tions concerning the intrinsic “accuracy” of the measure-
ment are then used to single out an essentially unique “ideal
screen observable” for each representation. These condi-
tions are in close analogy to Wightman'’s characterization of
the Newton—Wigner position observable.! However, Wight-
man’s assumption that the observable should be projection
valued (rather than a general positive operator-valued mea-
sure?) turns out to be too restrictive in the case of screen
observables and many similar problems, e.g., observables for
the orientation of a rotator, phase-space variables, or the
position of a photon. Therefore, this assumption was re-
placed by the minimality of a certain quadratic form, de-
scribing an “uncertainty” intrinsic to the measurement. This
“variance form” (defined for general observables over R”,
see Sec. III) vanishes for projection-valued observables, but
not only for these. Screen observables with vanishing vari-
ance form exist in the nonrelativistic and spinless relativistic
cases. For higher spin the variance form is necessarily posi-
tive, since in this case the unbounded operators describing
the expectation values of arrival time and location fail to
commute.

The general notion of covariant observables has been
studied by several authors.?* The basic structural result, a
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covariant version of the Naimark dilation theorem,** is pre-
sented in Sec. I in a slightly extended version and leads to a
general construction procedure for covariant observables.
To the author’s knowledge this procedure has not been ap-
plied systematically to the case of screen observables. How-
ever, some special cases have been obtained by Kijowski®
and Ludwig.”

ll. COVARIANT OBSERVABLES

An observable is the theoretical description of a measur-
ing device. The possible outcomes of individual measure-
ments form a set X and to each measurable subset 0 C X an
observable F over X for systems described in the Hilbert
space #° associates an operator F(0)eZ (F) with
0<F(0)<1. The quantity tr WF(o) is to be interpreted as
the probability that measurement on systems prepared ac-
cording to W (W0, tr W = 1) yields an outcome xeo. Ob-
viously F must be a positive operator-valued measure on X.
For technical reasons it is useful to consider not only the
measure F but also its integrals over a suitable class of func-
tions. More precisely we define for a Hilbert space 77 and a
locally compact space X, with & o(X) the space of contin-
uous complex functions on X, vanishing at infinity: An ob-
servable F over X in 57 is a linear map F: € o(X)—Z (#°)
such that £ >0=F( f)>0and ||[F()|<|| fI-

An observable F uniquely defines an operator-valued
Baire measure, which we shall denote by the same
letter, so that F( f) = fx f(x)F(dx). @ The operator
F(X): = sup{F( f)| f <1} determines the probability that
the apparatus measuring F responds at all. An observable is
called normalized if F(X) = 1. [ Every observable F can be
considered to be normalized over the one-point compactifi-
cation XU{ w0 }, when the measure of the “no event” result
“o” is defined by F({0}) = 1 — F(X).]

The set of observables over X is convex, and compact in
the initial topology induced by the functionals
F—{(p,F(f)¢) for g, € # and f €€ ((X). The subset of
normalized observables is in general not closed in this topol-
ogy. A decision observable® is a normalized observable Fsuch
that F: € o(X)—% () is a »-algebraic homomophism or,
equivalently, the associated measure is projection valued
with F(X) = 1. In many textbooks, beginning with von
Neumann’s, only this restricted class is used. However, since
the aim of this paper cannot be achieved within this class, we
have to make use of the more general concept above, which
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was introduced by Ludwig, Davies, and others.

Now let G be some physical symmetry group acting on
the parameter space X by homeomorphisms and denote by
T,: €o(X)—>%(X) the action lifted to € o(X) [ie,
(T, f)(x) = f(g 'x)]. Suppose furthermore that G acts
by symmetries on a quantum system described in a Hilbert
space 57, i.e., there is a projective representation U of G by
unitary (and possibly antiunitary) operators. Then we shall
call an observable F over X U-covariant, if U, F(f)U¥

= F(T, f) for geG and f€% ,(X). Equivalently, the mea-
sure F satisfies U, F(0) U ¥ = F(go) for geG and o C X mea-
surable. The compact convex set of U-covariant observables
over X will be denoted by # (U,X). An Fe # (U, X) will be
called pure, if it cannot be decomposed into a sum of nonpro-
portional elements of .# (U.X). [ Not every extreme point of
A (UX) is pure.] In typical applications (e.g., arrival time,
position, phase-space, or screen observables), G is a group
characterizing the kinematic properties of a particle.

One cornerstone of the constructions below is Mackey’s
theory of decision observables in .# (U,X), called “systems
of imprimity” by him. We can only indicate some basic re-
sults of this theory and must refer the reader to the litera-
ture.” Suppose G acts transitively on X and Fe.# (U, X) isa
descision observable for some unitary representation U in
Z. Then, heuristically, we can diagonalize all operators
F( f),sothat # = .£? (X,dx;.%"), the space of square inte-
grable functions over X with values in a Hilbert space ",
and F( f) is multiplication by f (x). By covariance, U must
act as (U, ¢) (x) = Z (gx)¥(g 'x), where Z(gx) is a
transformation of %", which must be unitary if the measure
dx is invariant. If 7 (g,,x) 2 (8,87 'x) = Z (§:82%), Uis
a representation. In particular & (-,x,) restricts to a repre-
sentation of the subgroup H = {geG /gx, = x,}. The repre-
sentations of the conjugate subgroups belonging to different
X, are conjugate via a suitable transformation &, hence only
one representation of the abstract group H is involved,
which in turn characterizes the pair F,U up to unitary equiv-
alence: Let G be separable and locally compact, HCG a
closed subgroup, and X = G /H. Identify X with a Borel sub-
set of G, so that every geG has a unique decomposition
g = %[glhlg], with X, & € H, and suppose for simplicity
that X has a G-invariant measure dx. Now let
D: H->% (%) be a continuous unitary representation.
Define % = £*(X, dx; %) and F(f), U, € Z(H) by
FOHYX) = f(x)P(x) and (U ¥) (%)
= D (h[g~'x]1"")¢(g"'x). Then U is a continuous uni-
tary representation of G and Fe.# (U, X), where U is called
the representation induced from 2, and {F,U} the canoni-
cal system of imprimitivity induced from &. The results
used below are (1) every decision observable Fe.# (U, X) is
induced from a representation & uniquely determined by F
and U, and (2) & is irreducible iff the set of operators
{F(f), U;| f€€ o(X), geG} is irreducible.

The second cornerstone of the constructions below is
the following ‘“‘dilation theorem,” which reduces the con-
struction of general covariant observables to the construc-
tion of imprimitivity systems.

Proposition 1: Let G be a group acting on the locally
compact space X and U a projective representation of G by
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unitary and antiunitary operators on a Hilbert space #°. Let
Fe# (UX). Then there is a Hilbert space Handa projec-
tive representation U of G with the same factor as Uand such
that U is unitary (resp. antiunitary) iff U, is. Moreover
there is an Fe.# ( U,X ) and a contraction V 2?”—»2?’ such
that

(1) Fis a decision observable,
(2) V*R(F)V=F(f), for fe€q(X),
(3) YU, =U,V, for geG,
and
4) {F(fIVY| fe€o(X), pei#} is total in F.

Moreover A, s /(}, V,and Faredetermined up to unitary equiv-
alence and are called the dilation of F.

If G is a topological group, the action G X X—.X is con-
tinuous, and U is a continuous ray representation, then Uis
also continuous.

Sketch of proof: (For details see Refs. 4 and 5.)
Asa positive map on an Abelian C*-algebra,
F: € (X)—>% (), is completely positive. Hence we may
apply the Stinespring dilation theorem and only have to
check that this construction is naturally covariant.'® Expli-
citly, we construct 5 as the Hausdorff completion!! of the
algebraic tensor product #: = € ,(X) ® # with respect to
the sesquilinear form (£, ® ¥y, £, @ ¥2): = (¥1,F( /1 2)¥),
which is positive by the complete positivity of F. We then
define F, U, and V' * as the extensions by continuity of the
linear operators

F(fYfed=(ffrey, V*fey=F(f)¥,
and _

U fey=T,feU,,
resp. the antilinear operator U fey=T,feUyifU,
is antiunitary. i, U, F, V’ is another dxlatlon, deﬁne

kY Z’—»ﬁ" by Sf®¢ F (f)V'y. The extension
S: #—5 is then a unitary equivalence with V' = SV.

QE.D.
Similarly, as for the GNS case of the Stinespring dila-
tion, we have the following “Radon-Nikodym” result.
Proposition 2: Let G, X, 77, and U be as above and F,
Fed (UX) be covariant observables with
fP0=F, (f)<AF(f) withA>0. Let &, U, ¥, and Fbe the
dilation of F. Then there is a unique Re % (%) such that
(1) OKR<A,
@) [RE(H]1=0, [RT,]1=0,
for fe¥,(X), geG,
(3) V*RF(S)V=F,(f).
Consequently Fis pure iff F(Z o(X))uU(G) is an irreducible
set of operators. .
Proof: Since R commutes with F, Eq. (3) determines the

matrix elements of R for a dense set of vectors. Define on #°
as in the proof of Proposition 1 the sesquilinear form

R(fl @Y, [,8%,): = (P,F (f, /2)¥2). This is positive by
the (complete) positivity of F, and bounded by A 1 by the
positivity of AF — F,. Hence R extends to a bounded form on
&, given by an operator R with the above properties.

QED.
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We may now combine the imprimitivity theorem and
the dilation theorem to a general construction procedure for
covariant observables on homogeneous spaces X = G /H.
The dilating operator Videntifies U as a subrepresentation of
the representation U, which by imprimitivity must be in-
duced from some representation 9 of H.

Construction procedure: Let G be a separable locally
compact group, H a closed subgroup, and X = G /H. Let
U:. G—% () beastrongly continuous unitary representa-
tion. In order to construct F € .# (U,X), proceed as follows.

Step 1: Select a continuous unitary representation
D: Hou (F).

Step 2: Induce from & the canonical system of imprimi-
tivity consisting of a unitary representation U-G—% (%)
and a decision observable Fe.# (U,X).

Step 3: Find an intertwining operator V: KoK
between the representations U and U, such that ||V ||<1 and
F (G o X))WH =27

Assertion: F(f): = V"‘F(f)V[fe Co(X) ] definesa U-
covariant observable. All Fe.# (U,X) can be constructed in
this way; 2 and Vare uniquely determined by F up to uni-
tary equivalence, and F'is pure in .4 (U .X) iff D is irreduci-
ble.

Of course, & is not completely arbitrary if nontrivial
intertwining operators ¥ are to exist in step 3.

lil. R™-COVARIANT OBSERVABLES

Screen observables, will be defined as observables,
which are based on a hyperplane X, and which are covariant
with respect to a group containing the translations along X.
Since some basic properties of screens depend only on this
restricted covariance condition, it is useful to study covar-
iant observables with G = X = R" separately. Throughout
this section a representation U: R"—% (5#°) will be as-
sumed to be given.

In order to construct a pure Fe.# (U, X) we have to pick
first an irreducible representation of the group H = {e},
which is trivial. The induction process then yields the regu-
lar representatlon (U W (x):=¢(x —y)in LX(R",d"x)
and (F(f)¢) (x) = f(x)¥(x), i.e., the usual representa-
tion of translations and position over X = R". (This in-
stance of the imprimitivity theorem is known as von Neu-
mann’s uniqueness theorem.) Starting instead with a
reducible representation of {e} we obtain a direct multiple of
the system {U F} and hence the followmg result: Every
Fe# (UJX) is of the form F(f) =2, V¥ F(f)V,, where
for all i, V;: #—.%%(X, dx) intertwines U and U and
FX):=Z,V¥V:<L

With each state We.7 (7°) we may associate the posi-
tive measures puy (dx)=tr WF(dx) over X and
v (dE) = to(W F(X)'2E(d£)F(X)'?) over the dual = of
X, where E is the spectral measure of U. [If tr WF(X) = 1,
M w and vy, are both normalized. ] The relationship between
these measures can be studied very easily by the above repre-
sentation for F: By (dx)=tr WF(dx) and vy, with
vy (dE)e®™ = tr WU, are the distributions of “pseudopo-
sition” and “pseudomomentum” for the Schrodinger system
{F,0} in the state W: = 3, V, WV *¢.7 (). In particular if
tr WF(X) = 1, the product of the variances of the probabil-
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ity measures uy and vy, is bounded away from zero. For
screen observables these are the wuncertainty relations
between energy and arrival time and between transverse mo-
mentum and arrival location.®

Both £y, and vy, are absolutely continuous. If E,. de-
notes the projector onto the absolutely continuous spectral
subspace of U, then for all fe% (X): F(f)(1 —E,. ) =0.
For example, if U describes the time evolution of the system
(dim X = 1), this implies that a covariant arrival time ob-
servable is insensitive to bound states of the Hamiltonian. In
the case of the harmonic oscillator there are no covariant
time observables at all. This is not surprising, since quanti-
ties like “the time ¢ at which the particle reaches the origin”
make sense only modulo periods of U. In the classical case
this difficulty is reflected in the nonexistence of variables
globally canonically conjugate to the energy. Of course, in
the case of the oscillator (but not in more complex cases) we
may consider instead covariance with respect to
G=X=R/Z

The support of vy, is contained in the absolutely contin-
uous spectrum X: = supp{E,. E(-)} of U. This imposes con-
straints on the support of u .. For example, if there is a state
W such that i 5, is nonzero and supported by a proper cone
in X, then by the “edge of the wedge” theorem'? we must
have £ = R". In particular, unless £ = R”, we cannot find a
projection-valued Fe.# (U,X), since for such F we could
choose uy to be supported by an arbitrary set of positive
measure. We may also use the edge of the wedge theorem for
the reverse Fourier transform to conclude that if X is con-
tained in a proper cone the support of u, is equal to X (or
Hw = 0). Since this spectral condition is satisfied for screen
observables, we conclude that there is no apparatus prepar-
ing particles in such a way that they avoid with certainty
some nontrivial patch of some translation covariant screen.
Of course this does not mean that x4 cannot be highly con-
centrated. For example, some of the ideal screen observables
constructed below (namely those for spinless and/or nonre-
lativistic particles) are easily seen to be concentratable'?
the sense that we can make uy (o) > 1 — € for any open set
.

Another characteristic difference between covariant de-
cision observables and the more general type considered here
is the following: For a decision observable, the weak closure
of the range F (% ,(X)) is an Abelian von Neumann algebra.
In the general case, however, this space will not be an algebra
and the von Neumann algebra generated by the range of an
observable may be considerably larger than the range itself.
To be specific, suppose that Fe# (UX) is pure R" -covar-
iant. Since F(f) = VE( )V, the von Neumann algebra
generated by F(%,(X)) is the closure of V*.4V, where
MCH (#) is the von Neumann algebra generated by
F(%O(X))and VV *. Itis useful to thlnkofF(%o(X))” asthe
space of functions of “pseudoposition” Q and of V¥V *asa
specific function A (P) of ¢ ‘pseudomomentum.” Here, .# is
clearly invariant under “position” translations and since it
contains exponential functions of “position” it is also invar-
iant under “momentum” translations. By the general theory
of phase-space translation invariant operator spaces'* the
commutant of .# is generated by the operators exp (ip- Q)
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with peR" a period of A. A nontrivial period of A is impossi-
bleif 3 (and hence supp 4) is contained in a proper cone. In
this case the range F (€ ,(X)) of every pure U-covariant ob-
servable is irreducible on its support F(X)#°.
By the spectral theorem each decision observable F over
R is uniquely related to a self-adjoint operator Z = fxF(dx),
where Z is interpreted as an expectation value functional in
the sense that tr WZ is the expectation value of the probabil-
ity measure tr WF(.). This definition and interpretation of Z
immediately generalizes to the case of general (i.e., not pro-
jection-valued) observables. However, it is then no longer
true that Z uniquely determines F. In particular, tr(WZ?)
need not be equal to the second moment of the probability
- measure tr WF(.). The failure of this equality is measured
by the variance form of F, introduced in the following propo-
sition. It is formulated for the multidimensional case and
does not depend on a covariance condition.
Proposition 3: Let F: € o(R" )—% (#°) be an observ-

able.
integrals Z ¢: = fx, F(dx)¢

(1) Then the :
(v = 1,...,n) converge strongly for @ in the domain

2(2):= [WU( Zx )<¢,F(dx)¢)< oo]

The symmetric operators Z, defined by this formula are
called the expectation operators of F.

(2) For ¢, Y2 (Z) and v = 1,...,n, define

A, (p¥): = Jxvxu (p.F(dx)¥) — (Z,9,Z,9),

where A is called the variance form of F and is positive in the
sense that for g, eZ (2): 2,,A,, (@,,9,)>0; F is called
variance free, if & (Z) is dense and A =

Proof:

(1) (The validity of this statement is erroneously denied
in Ref. 15, p. 339.) Consider the set of cutoff functions
he? o(R"), with 0<A<1 and compact support, directed by
pointwise ordering. The claim is that for g% (Z) and
v = 1,...,n, A —F(x,-h)@is anorm Cauchy net. Consider the
dilation ff F,VofF (see Proposition 1 with trivial group).
Then for two cutoffs 4, i ":

IF(x,m)p — F(x,h ") |I?
= |V*Fx,(h—h")We|?
<|Fx,(k—n"Pp |
=(Vp,F(x2(h—h')Y)Vp)

- f R (h(x) — h' ()@ Fdx)p ).

Ashand k'’ increase to 1, this goes to 0 by dominated conver-
gence.

(2) For the dilation F, define Z, and 9(2) analogous-
ly. Then 2 (Z) = {p | Ve D (Z)} and the above argument

shows that for
9D (Z), Z,p=V*Z,Vp,
then

A, () =(Z,Vp,Z,Vy) — (V*Z,Vp,V*Z, V).
Hence if
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P,€2(2): 3 A (@,9,) = |l6]* ~ |V *4]*>0,
i
with
$=32Z,Vp,and |V|<1. QED.

The variance form A describes an “uncertainty,” which
is intrinsic to the measurement of F. Decision observables
are variance-free. The converse is false, in general, but holds
for normalized observables of compact support. Thus vari-
ance-free observables are a natural extension of the class of
decision observables. Even for variance-free observables, the
symmetric operators Z, need not have any self-adjoint ex-
tensions. They also need not commute, although they are by
definition jointly measured by F; (A,, —A,,) is just the
commutator of Z, and Z,, written as a quadratic form on
2 (Z). The following example shows that this form may
indeed be nonzero.

Example: Covariant phase-space observables (cf. Refs.
14). Let X = R?" be a phase-space, equipped with a sym-
plectic form o(x,y) = 0"x, y,, and let U: X—>% (F) be
an irreducible representation of the Weyl relations U, U,

= exp[ (i/2) o(x,y)-U, ., ]. Then the self-adjoint genera-
tors RY of U defined by U, = exp(ix,R”) satisfy the ca-
nonical commutation relations i/[R” ,R* } = o™ -1. The U-
covariant observables F over X are all of the form
F(f)=gdx f(x)U, FU*, where F>0is a trace class oper-
ator. We shall assume a smtable normalization of Lebesgue
measuredx and tr F = 1, so that Fbecomes normalized. The
measure uy = tr WF(-) has the Radon-Nikodym density
x—tr( WU, FU*), which should be thought of as a convolu-
tion of Wand F. The moments of 25 can be calculated quite
simply from the “moments” of W and F (wesetx” = o'*x,
andtr W=1)

fx’yw(dx) =tr WR”—tr FR",

fx"x“,u,y(dx) =tr(WR*R") + tr FR*R* + io**

—tr WR*tr FR* —tr WR*tr FR".
(Note that this is real symmetric by virtue of the commuta-
tion relations.)
Since U, Z(2Z)=%2(Z) and U, is irreducible,
2 (Z) = {0} or Z(Z) is dense. The above formula shows
that the first case occurs iff one of the moments tr(FR*R*)
diverges. Otherwise

D(Z)=nD(R")

is independent of F. Then Z, =R, — (tr FR,)-1 with
o R, = R*. Since F is normalized, A is invariant under U
and hence must be the restriction to & (Z) of a multiple of
the identity

A,, = {tr(FR,R,) — tr FR 1 FR, + io,, }-1.

For calculating the second moments of iy, it is suffi-
cient to know Z, and the symmetric part of A, . However,
A,, + A, is constrained by the condition that the complex
matrix A, with its prescribed antisymmetric part ic,,,, is
positive. This implies inequalities also for the symmetric part
of A, equivalent to the usual uncertainty relations for the
trace operator F. Thus there is a lower bound to the intrinsic
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variance A of any joint measurement of position and mo-
mentum (even independently of the covariance condition).
This supplements the usual uncertainty relations, which re-
fer only to the impossibility of preparing certain states. The
observables F for which the variance A is minimal are given
by coherent states F and are indeed the most widely used
covariant phase-space observables. A similar condition of
minimal variance form will be used below to single out ideal
screen observables.

IV. DEFINITION OF SCREEN OBSERVABLES

In this section the only difference between the relativis-
tic and the nonrelativistic case will be the choice of the kine-
matic group K, which will be either the Galilei or the Poin-
caré group (including reflections). The group K acts by
affine transformations on the four-dimensional space-time
manifold, in which we shall consider a fixed three-dimen-
sional hyperplane X containing a timelike direction. Thus in
a suitable coordinate system, which will also be held fixed in
the sequel, X = {(xo,x,,X,,%;)€R*|x; = 0}. The intersection
of the worldline of a classical particle with X can be inter-
preted as the event of the particle hitting a screen that is
stationary in the 1-2 plane. An ensemble of classical free
particles will thus produce a probability distribution over X.
Shifting this ensemble by a transformation geK with gXCX
will shift this probability distribution by the same transfor-
mation g. This aspect of the classical trajectory concept can
be transcribed into quantum mechanics as a covariance con-
dition for an observable as follows. Let G denote the connect-
ed component of the subgroup of geX with gX C X. The kine-
matic properties of the kind of quantum particles considered
are characterized by an irreducible projective representation
U of KX in a Hilbert space 7 with mass m and spin s. Then a
screen observable is an observable F over X covariant for the
restriction of U to G, i.e., Fe # (U | G X).

The set of screen observables is very large, which is not
unreasonable, since there are many screenlike measuring de-
vices, supposedly associated with different observables over
X. The detection of a particle by such a device generally
depends on some scattering or ionization process in the
screen. The cross section of this process (as a function of the
particle’s momentum) enters the expression for the prob-
ability that the particle is detected at all, given by the opera-
tor F(X). On the other hand, for the observable associated to
the classical kinematic concept of particles meeting a time-
like plane, (almost) all particles will be “detected” so that
F(X) = 1, independently of momentum, i.e., the kinematic
concept abstracts from any material realization of the
screen. In this sense the aim of constructing “ideal” quan-
tum screen observables mimicking the classical kinematic
concept is opposed to the construction of faithful models for
real screens. Nevertheless the ideal screen observables de-
scribed below can be useful in the analysis of concrete experi-
ments, e.g., when a more detailed analysis is too difficult and
can reasonably be expected to have little influence on the
results.

The nonuniqueness of screen observables arises largely
because the representation U | G is reducible. (The commu-
tant of U | Gis generated by functions of the components P,

797 J. Math. Phys., Vol. 27, No. 3, March 1986

and S, of momentum and spin normal to the screen.) Hence
if 4e# (#°) commutes with U and F is a screen observ-
able, thensois F( f) = A *F( f)A. In order to define unique
ideal screen observables, we therefore have to introduce con-
ditions excluding such transformations. Specifically we shall
define an ideal screen observable as a screen observable,
which can be decomposed into pure components Fsatisfying
the four conditions below.

Condition 1: F(X) is a projection to a subspace of the
spectral subspace [P; > 0] of P;.

This condition introduces the restriction that the screen
should be “one-sided.” We could also have restricted our-
selves to P; <0 or a symmetric/antisymmetric subspace
with respect to P;— — P;. Together with condition 3 this
condition implies that the total detection probability F(X) is
equal to one for P, > 0. It also forces the decomposition of an
ideal screen observable into pure components to be as simple
as possible, namely a direct sum.

Condition 2: F is also covariant for the transformation
0K with 0(xg,x,,%5,%3) = ( — Xg, — X1,%5, — X5).

Without this condition a transformation of F with
A = exp{iP;-a} would still be admissible, so that there
would be no justification to associate F with the hyperplane
x; = 0 rather than x, =a. The reflection & chosen here
leaves P, and S, invariant.

Condition 3: If pe¥ is a differentiable vector for the -
whole group K and ¢ (p) has compact support in the half
space p;>0, then the second moments of the measure
(@ F(-)p ) exist.

This “regularity condition’ rules out transformation by
self-adjoint unitary functions of p,.

Condition 4: The variance form A,,, of F is minimal.

The variance form A (see Sec. III) describes the intrin-
sic “‘uncertainties” in the measurement of F. The first three
conditions single out one parameter families of pure screen
observables. The variance form [or more precisely, all ex-
pressions 2., A,,, (@,,9, ) with @, €% (Z)] depends mono-
tonically on this parameter I'. Thus condition 4 demands the
choice of the minimal value of I'. A pure screen observable is
characterized by conditions 1-4 up to the choice of the sub-
set yC{ —s,..., + 5} of the spectrum of S; by which it is
supported. By forming a direct sum of such observables with
y = {n}, we obtain the following result.

Main result: Given an irreducible representation of K
with mass m and spin s, there is a unique ideal screen observ-
able such that F(X) is the projection onto [P;>0] and
F( f) commutes with the spin component S;. The latter con-
dition is redundant in the nonrelativistic case and for s = 0,

, 1.

: With the necessary changes for a spacelike hyperplane X
these conditions define an “ideal position observable,”
which turns out to be the standard position observable in the
nonrelativistic case and the Newton—Wigner—-Wightman ob-
servable in the (massive) relativistic case. In this sense the
above conditions characterize the exact analogs of the stan-
dard position observables in the screen case.'S

V. CONSTRUCTION OF SCREEN OBSERVABLES

We shall begin by introducing some notations and the
explicit form of the representation U describing the particle.
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It will be convenient to take the symbol X now for the cover-
ing group of the Poincaré/Galilei group. (The action of K on
space-time is defined in the canonical way.) Then GC X will
be the connected component of the subgroup leaving X in-
variant, HCG the subgroup leaving the origin invariant
(i.e., boosts along the screen and rotations of the screen) and
TCH will denote the subgroup of rotations (i.e.,
T~R mod 47). Here T is also a subgroup of the rotation
subgroup SU, C KX serving as “little group” in the construc-
tion of representations of K.

In order to define U in the relativistic case let B(p)eK,
for peRY, p°>|p|, denote the pure boost taking

7: = (/*p,.,0,0,0) to p. Later we shall also need the pure
boost b(p)eH taking p: = (ps —pi — P3,0,005) to p.
This b(p) is independent of p;. We will denote by p(p)eSU,
the rotation, which is the product of the pure boosts from p
to p to p and back to p. Now let m > 0 and s be an integer or
half integer. (We shall not consider m = 0, for the sole rea-
son of saving space.) -

Let &: SU,—% () be the irreducible representation
with dim ¥ = 2s + 1, and let #: = L*(R*d°p/po, %),
where p, = (m? + p*)'/2. Then for (y,A)ekK,

(UM 1¢(p) = €*? D(B(p) *AB(A~'P)W(A™p).

In the nonrelativistic case the group elements will be
parametrized as (yo; #,R)eK, where y.eR, y,ueR? and
ReSU,. Here K  acts on R via
(PoiR) (x0iX) = (%o + YouRX + X +¥).

Now let m >0 and s be an integer or half integer and
D: SU,~% (%) as in the relativistic case. Let
# = L*(R*d>p, %"). Then

2

[U(xpsu,R) Y] (p) = exp z[;uy + ;

XD (R)(R ~'¢(p — mu))
defines a projective representation of K. For later use we
introduce the notation b(p): = (0,0;p,/m, p,/m; 1)eH.

The main results of this section are coliected in the fol-
lowing theorem.

Proposition 4: Let G:H>% (ﬁf ) be a continuous uni-
tary representation and €: R—~% (% ,.%") a measurable
function such that for each p,eR, € (p;): F~ —% inter-
twines & | Tand & | Tand

CP)E(P)" +C(—p)E(—p3) <L
Let # = L2 (X,d %7 ), F( f )% (#) the operator
of multiplication by fe% ,(X), and define V: #—7# by

(V) o) = (om0 [ L2 g,
Po

)

Xexp( — ipoxo + ip-x).@(b(p))‘é’ (73)
XZ @)W (@)

in the relativistic case, and
172

(V) (xx) = (2m) ~*/2|d%p

Ps
m

2
Xexp( - i-z%xo + iP'!)-@ ®W@))
X € (p3)¥(p)
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in the nonrelativistic case. Then F( £ ): = V' *F( f )V defines
ascreen observable, and all screen observables are construct-
ed in this way. Moreover, Fis pure and satisfies conditions 1,
2, and 3 of Sec. IV iff & is irreducible, € (p,) = Ofor p, <0,
% (p;)=% is a constant isometry for p,>0, and
D (6)€ = € D (0) for some antiunitary operators .@(0)
and 2 (6) in & and ¥, representing the reflection
Pr—=> — P>

Proof: Both relativistic and nonrelativistic construction
follow the scheme outlined in Sec. I1. In the following proof
these two cases will be distinguished by labels (R /) and
(NR#), i=123 In step (1) the representation
fl: G;» U (2” ) will be induced from the given representa-
tion &. According to the scheme, we then have to find all
intertwining operators between the reducible representa-
tions Uand U L.G- To this end Uis transformed in step (2)
by an isometry ¥ *: Fs = 2 (5, d’f,.%’) to a repre-
sentation U whose irreducible components are more readily
analyzed. Instep (3) theintertwining operators ¥ *: #—#
between U and U are constructed and parametrized by % .
Then ¥ = PV takes the form given in the theorem. By the
results of Sec. II we thus obtain the most general screen ob-
servable. The remaining properties are checked in step (4).

(R 1) Identify X with the translation subgroup of G.
Then the decomposition g = x[g]h [g) e XH is simply
(»A)=(p1)(0,A). Hence hlg~'x]~'=h[g], and
hence  [U(y, A)¢](x) = @(A)t/}(A“(x —y)), for
Ve F = LA XdnT).

(R2) Set = LXE, df,dEdExK), where
=, ={£eR®&> (£ + £3)"} is considered as a subset
of the dual space of X. Then

(T, MPE) = 5D (B(E) T ABAT'OWATE),

for (y,A)eG,¢e X defines a representation; U depends
onlyon & | T. The commutant of (), together with the
function £3 — £7 — &3, generates the commutant of U.
Now V: ¥’ —7, defined by

Py (x) = @m) 2| d e~ 5D B(E)W(&)

is an isometry intertwinin Uand U.
(R3) Squose V*: # > intertwines U and U | G.
Then since V'* intertwines the translation subgroups,
(V*$) (pupup)€X can  only depend on
¥( Py P1s P2) € & . Assume this correspondence to be given
by ‘6"(p) F X . Then V* intertwines iff

Z(p)*D(b(p)~'Ab(A~p))
=D(B(p)'AB(A™'p)Z*(A 'p)

for all p and A € H. Using the identity

P (P)B(P)'AB(A~'p) = b(p)~'Ab(A~'p)p(A~p),

with
p(p)=B(p) " 'b(p)~'B(p),
and the definition

2 (p) =|p:|"*€ (D) D(p( p)),
this condition becomes equivalent to

E(p)=C(AD) =D (NE(P)D (1",
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forAeH,reT,ie., € (p) = € ( p,) intertwines rotations.
The bound on % results from || 7 *¢||?<||#||?, where the fac-
tors |ps|'/? cancel in the substitution (p,,p,, ps)
—(6o €1, 62).

(NR 1) In this case U is a projective representation of
K. The associated central extension KDK has typical ele-
ments ( yo, ¥, #, R, §) with £ € G, |£ | = 1, and a multiplica-
tion law g” = gg' extended by

&" =64 expl (im/2) (u-Ry' — y-Ru' — yyu-Ru')].
Now, U becomes a true representation of K with the defini-
tion U(0,0,0,1,5) = £-1. The subgroup of K generated by
G(resp. H) and the center of K will be denoted by G (resp.
H). ThenX=G /H = G /H. 1dentifying X with the trans-
lation subgroup in G we obtain the Mackey decomposition
g=Zx[gl-hlg]leG given by (o yu,R,§) = (o, »,0,1,1)
(0,0,u,R, &-exp[(im/2) Xu-y]). We may now apply the
construction procedure to G and H. Proposition 1 yields the
additional information that U can be considered as a projec-
tive representation of K with the same factor as U or, equiv-
alently, that U (O 0,0,1 g ) =¢&-1. This imposes on the repre-
sentation Z: H—% (ﬁff ), from which {U F} is induced,
the constraint £ (0,0,0,1,¢) = ¢-1, and, since the extension
H=H e U(1) is trivial, 7, uRE) =¢9(u,R),
where J isa representation of H in_ %". Then the induction
procedure yields #° = £*(X,dx, %) and

[U(yo’yru9R’§)'/'](xo:x)
= ¢ exp[ (im/2)u{2x — y — (xo — yo)-u}]
-@(u’R)'ﬁ(xo —yoR THx —y — (xo— }’o)u))
(NR2) Choose ¥ = .Z*(R%dE,dE, d§2,.2”) and
V ﬁf—m‘l’as

V) (x): = @m) 2| d ¢

X exp( — iEoxo + IEX) D(BEY(E).
This operator is clearly unitary and flg: = ?""ﬁg 4 takes the
form
(U yor st REY) ()
= exp i{(m/2) yu — p£ +poko} D (O,R)
X W&o — u-é + (m/2)u?, R~ (& — mu)).

(NR 3) If V*: Z—5 intertwines U and U | G, we
conclude as before that

(v*'p)(Plst,Ps -
with

C(P)*P(OR) = D(RYZR ~'(p — mu))*,
Thus, € ( p) depends only on p, and intertwines 2 | Tand
2 | T. We check easily that V is contractive iff
%(Ps)(g(Pz)‘ + € (—Pp3) % ( — p3)*<1 for each p; and
that V=VV: F-F is given by the formula in the
theorem. .

(4) Purity of Fand irreducibility of & are equivalent by
the general resuits of Sec. II. Here F(X) is supported by
[p;>0] iff ¥ vanishes off this subspace, i.e., € ( p;) = 0 for
p3<0, and F(X) is a projection iff ¥ is an isometry iff in
addition almost every % ( p,) is an isometry for p, > 0. Con-

<5(1))"!/'( ,pl,pz)
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sider now the transformation & of condition 2: Since it con-
tains a time inversion and the Hamiltonian is positive, it can
only be represented by an antiunitary operator U(8), which
is unique up to a phase by the irreducibility of U:
K—% (7). In both theories (U(8)¢)( p) = Z (8)¥(6p),
where Z(6) is an antiunitary operator in %  and
6 (py P2 p3) = (P1, — Py, P3).- Now suppose F is also co-
variant for 6. Then by proposmon 1 there must be an antmn-
itary operator U (9) on ¥ extendmg the representation U to
6, satlsfymg U(6)F( ) U(0)* F( Te f). These condi-
tions 1mp,¥(U(0)1//)(x) @(e)¢(ex) w1th9(0) antiuni-
tary in %". Moreover V intertwines U\ ()] and U(o) iff
=@(6)%(}23) =% (D) D (6). Note that if J is irreduci-
ble, 2 (6) is also unique up to a phase. We may then pick
eigenbases {¢,,} C %, ¢tlcxy for the generators of
9T, 7 I T with @(0);’,,, =% @(0);,,, _g,,, Then
C(P3)ow =F ,n ( p3)§,,, with 25+ 1 functions
€m: R"¥>{—-10,1}

Finally suppose that the variance of (i, F(-)¢) is finite.
Then certain combinations of first _derivatives of
Db(p)E () D (p(PWY(p) [resp. D(b(p))E (ps)
X9( p)] are square integrable. In particular, this function is
absolutely continuous. Condition 3 requires that this is the
case for a large class of differentiable functions ¢. Since
2 (5( p))and Z(p( p)) are clearly continuous, this implies
that € is continuous on R*. Since ¥ ( p,) is contained in a
discrete set, this function must be constant. It will be seen in
Sec. VI that the properties stated in the theorem indeed im-
ply condition 3. Q.E.D.

This theorem characterizes the direct summands of
ideal screen observables up to the choicg of two elements.
One of these is the isometry €: %~ ¥ Since ¥ inter-
twines the representations of rotations and the reflection 8, it
is  characterized completely by the  subset
vy C { —s, — s+ 1,..., + s} of the spectrum of the generator
of Z | T by which it is supported. The second object tg be
chosen is an irreducible representation &: H—»% (%),
which is only constrained by the condition that ¥ must also
b}:, contained in the spectrum o(L) of the generator L of
.@ I T. We now briefly describe the relevant representations
9 of H. .

In the relativistic case H~SL(2,R), and & has three
generators M,, M,, and L. With M |, : = 4 iM, + M, the
Lie algebra is defined by [LM,]= tM, and
[M,,M_]= —2L. Both M, and L commute with an-
tiunitary involution_ 2 (). We may choose a basis |#) with
L |n) = n|n) and 9(6)|n} = |n). Then

M_ \n)=A(n)|n+ M_(n)|n)=A(n—1)|n—1)
withA(n) e R and

JA(m)>— |A(n—1)|>*=2n

Hence |A(n)|*=n(n+1)+T, where T'=M?

+ M?% — L2 is the Casimir invariant. For n € o(L), both
|A(n))? and |A(n — 1)|*> must be non-negative.

If the spin s and hence o(L) is integer, we obtain a con-
tinuous series with o(L) = Z for I > 0, the trivial represen-
tation for I' =0, and two series with I' = — ny(n,— 1),
ny>0, in which o(L) is bounded above and below, respec-
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tively. If s € Z + }, the discrete series is given similarly and
the continuous series is obtained for I'>1.

In the nonrelativistic case, H is the twofold covered Eu-
clidean group, i.e., a semidirect product of R?> with
T~R/4nZ. We shall write the elements of H as (p,a) with
(p.a) (pa’)=(p+R, p.a+a’). ThenforeachmeiZ,

(p,@) = ¢ isa one-dimensional representation. For the
other itreducible representations we take Z to be the sub-
space of .Z£2(T,da) with ¢(a + 27) = + ¥(a), where the
sign distinguishes the integer and half-integer spin cases.
Then we set

(D 0))(B) =¥ B—a),

(D (O (a) = ¥ —a),
and

(2 (p.0)Yd)(a) = exp(imTep)p(a),
with

( — sin a)
e, = .

cos @
The quantity T parametrizes the orbital radii in Mackey’s
construction of representations of semidirect products and is
a characteristic length for the screen observable in question.
This is seen in the following example.

Example: For nonrelativistic, spinless particles we have
¥ = {0}, so that we obtain a one parameter family of pure
screen observables satisfying conditions 1, 2, and 3. When
¥ c L Tda), €: V% maps to the constant func-
tion and, for I'>0,

Ve v) (x, a)
d’p| ps|'?

— (217.)—3/2‘[
P3>0
2

X exp i{ ——zpr—n-xo+ip-(x+\/fea)]¢(p).

Thus Fr. (f) = VEF (f)Vr = FoMr (f)), where
27
Mp(f)(xp,x) = —I—J- de f(xo, x +Te,)
2w Jo

denotes the average of f over circles of radius {T.

Evidently, this smearing out of the observable F, will
not change the expectation operators Z;, Z,, and Z,, while
strictly increasing the variance form A. Thus condition 4 of
Sec. IV singles out F, as the unique ideal screen observable
for nonrelativistic spinless particles. For higher spin and rel-
ativistic particles, the calculation of A and hence the evalua-
tion of condition 4, is more involved and will be carried out
in Sec. VL.

VI. EXPECTATION AND VARIANCE OF SCREEN
OBSERVABLES

In this section we shall compute the expectation opera-
tors Z, and variance form 4,,, (v, x =0,1,2) introduced in
Proposition 3 for the screen observables characterized by
Proposition 4. We have Z, = V"'Z V, where Z is
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the operator of multiplication by x, in
¥ = 7x, dx, dx, dxz,ﬁ{’ ). It is useful to consider also
the  operators _ Z, = V"Z V in the space
#=Lzd 35,3:” ) from the proof of Proposition 4. Here,

(Vz//) (X X) = (2m) ™% zfd 3€ exp( — i€pxo + IEx)

X DbEWE)

is a Fourier transform with an additional twist depending on
the repr&sentation Z of H. It is then easy to check that

Z,= - 1——+ ¥o(8),

9o
and
Z, = +7.(5) (k=12),
where ‘
V.6 =idb©) %, 9 D@

These operators are §-dependent linear combinations of
the generators of 2 in ¥ and will be computed below. Then
Z, = V*ZV, where V is the transformation from the proof
of Proposition 4. In calculating this expression, we use that
the isometry < ( p,) determining ¥ is constant, by omitting
terms like % ( p;)*(8 /dp;) € ( p;)- This is also important
for _calculating the variance form 4,,(4,¥)

=(Z, Ve, (1— VV")Z Vy): since ¥ is constant,
i /06,) Vi isagainin the range of V. Therefore the contri-
butions from the differential operators in Z to the variance
form vanish, and

A, ($9) = f d3E((V$)(£), B, (&) (V) (E)) 5,

where

8,5 =PY (1 -P)Y, ()P,
and P, = ¢ ¢* = the spectral projection of the generator
of 9 rT for the set ¥ C { —s,..., +s}.

Consider first the slightly simpler nonrelativistic case.
Then Y,(£)=0 and Y, and Y, are independent of £, and
equal to the boost generators for &. Thus in an eigenbasis
{{n)} of L, ( +iY, + Y,)|n) =+T|n + 1). Then A is pro-
portional to I'. For example, if ¥ = { — ..., + s} the com-
mutator form is

(1/iY(Az — Byy) = (1/D)[Z,Z,]

=F'(P+s _P~s)y

which vanishes only fors = 0 or I = 0. The choice I' =0 is
the only case in which the screen observable becomes vari-
ance free, and is thus demanded by condition 4 for ideal
screen observables. This means that ) represents boosts
trivially, so that the factor 2 (b( p)) can be omitted from the
definition of ¥ in Proposition 4. For Z, = V'*Z, V we then
obtain

—12_0

z = ~12

0 P 3p3p3

Z,=i-% %7 (k=12).
ap, m
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These operators are defined on the domain
D(Z) C L*(R*°XR*,dp*,. %) of functions ¢ such that
Z,pe ¥ and lim,_, p; *¢( p) = 0. Since Z, has defect
indices ( «0,0), it is maximally symmetric. [ The functions
#(p) =p, exp( — p2/2m)-¢(p,, p,) are in the defect
space.] Also, Z, has defect indices (o0,0) [with
¢, () =\pse*"$(p*/2m, p,)] and thus admits self-ad-
joint extensions. However, there is no proper extension 4 of
Z, that still satisfies the covariance condition U, AU?
=A —x,-1 for translations (x,x,,x,) along the screen.
Formally, the operators Z, can be obtained by substituting
operators for position and momentum in the formulas
2= —m(qs/P3), 2 = qix + (Px/m)Z, for the arrival co-
ordinates of a classical free particle at x; = 0.

In the relativistic case the calculation of Y, (£), or, what
is the same thing, the calculation of the Lie algebra valued
form b(£) ' db(£) requires a little more work and yields
the following result:

—1
/12

Yo(8) = (&M, + &:M,),

Yo(é‘) _—i——L’

Y, = —Lar, 4 &1 prE
0

A A+&

—1 3 5
Y,(8) = —M, + —=22-Y,(§) + —=—L,
2§ /‘L 2 A+§OO§ /1(/1+§'0)
where A = (£2 —£3 — £%)"? and M,, M, and L are the
self-adjoint generators of the representation & of H. Then
withM , = +iM, + M, and

A, =1{P,M (1 -P)M_P,
+P,M_(1—P,)M_P,},

and assuming that ¥ has no one-element

[P,M,(1—P,)M P, =0]:

Bu(§) =27 (66, ~A78y) -0y —id %€, 70 .
Independently of assumptions about y, we have
A,, (£)g = — 1/24?, so that the variance form is predo-
minantly spacelike. The commutators i[Z, ,Z,, ] are all pro-
portional to A _. The variance form depends on the charac-
teristic parameter I' of & via the matrix elements of M, and
M _. The following lemma asserts that choosing I" smaller
decreases A in a very strong sense.

Lemma 5: Let y C { —s,..., + 5} and AT the variance
form of the relativistic screen observable characterized by ¥
andI'. Thenif ¢, (v =0,1,2) are in the domain of A", for T
in some interval,

2
FH z AS}I.(¢V’¢[J)

v =0
is an increasing function of I".
Proof: By the above formula for A in terms of A(§), the
assertion is equivalent to the monotonicity of

(., P,Y ()1 —P)Y,(§)P,4,)

&aps

2

=l

2(1 —P,,)Yﬂ(é')quﬁ“
m
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for any choiceof £ and ¢, € 5"\/ .Since (1 — P, )LP, =0, we
may write¢ = (1 — P, ) (M ¢, + M_¢_) with ¢, inde-
pendent of I'. Then

I = 3 [<n.M . ) + (n|M_g_)|*

ney

= Y ln(n—1) +T)"*(n — 1,4.)

ney

+(r(n+1)+T)%n+ L,6_)|2

We can check by differentiation that each term in this sum
increases with I for any choice of (n + 1,6 ). Q.E.D.

By definition, an ideal screen observable F is a direct
sum of screen observables F,, determined by the parameters
I'; and 7;. The sets ¥; must be disjoint and we may as well
assume Uy; = { — 5,..., + s} or, equivalently, F(X) = pro-
jection onto [p,>0]. By condition 4, we have to choose each
I'; as small as possible consistent with ¥,. For any choice of
the partition {y; } there is hence a unique ideal screen observ-
able. It may happen that different choices of {y; } yield the
same observable: If I is taken to be the infimum of the values
admissable for y, the representation & may become reduc-
ible. For exampleif y = { — s,..., + s} and sis an integer, the
minimal choice of T is I = 0, in which case the representa-
tion is decomposed into three parts with L >0, L =0, and
L <0. (The critical value for half-integer spinis I' = 1.) In
particular, for spins = 0, 1, or 1, there is only one normalized
ideal screen observable.

For higher spin, condition 4 does not single out a unique
partition {y;}. For example, for the partition of
{ —s,..., + s} into one-element sets, the variance determin-
ing operators are A’ = }|L | and A"’ =} L. On the other
hand, for y={-s..,+s}, AP =Ys(s+1)+T)
{] —s){ —s| £ |s){s|}, i.e., contributions to the variance
come only from the largest and smallest eigenvalue of S;. For
5> the resulting variance forms are clearly not comparable
in operator ordering. In order to characterize a unique ideal
screen observable iri these cases we have to impose an addi-
tional condition. The choice of the one-element partition is
equivalent to the condition that each F( f) commutes with
S;.

Explicit expressions for Z, and A, in the Hilbert space
ZL*(R% d°p/py; X) of the given representation can be as-
sembled from the above formulas for ¥(£) and an expression
for V*(3/3€,) in terms of 3/dp, and the form
p(p)~'dp( p). Since we did not find the result very illumi-
nating, we shall only note the resulting differential operators
in the case s = 0:

Zy= — 08, 0 _

— £9. o} Q
Ps 9ps  2p} Ds ’

z =it 1Pz, g +Poz, k=12),
. Po Po

where Q,, 0,, Q5 denote the Newton—Wigner position ob-
servable and 4 © B =}(4B + BA), the Jordan product.
Once again these expressions are formally the same as the
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arrival coordinates of a relativistic free classical particle.

Vii. DISCUSSION

A basic interpretation rule of quantum mechanics states
that to each measuring device we may associate an operator-
valued measure in Hilbert space, called an “observable.”
However, there is no theory of measurement that would—at
least in principle—allow the computation of this measure
from a blueprint of the measuring apparatus. Thus, if quan-
tum mechanics is not to be left empirically vacuous, we have
to make a preliminary choice of observables at least for some
basic methods of measurement. By combining a few basic
observables with the quantum mechanical descriptions of
motion in external fields and scattering with test particles, a
fairly detailed theoretical description of many measuring de-
vices can be developed. At a later stage in the development of
the theory the initially chosen basic observables may be re-
placed by more realistic descriptions of actual measuring
devices. The screen observables constructed above may
serve as basic observables in this program.

The characterization of screen observables in Sec. IV is
formulated entirely in terms of an axiomatically postulated
representation of the kinematic group K. In this sense a
screen observable measures a “kinematic property” of quan-
tum particles. Other choices of covariance conditions corre-
spond to different aspects of “quantum kinematics”, e.g., to
observables for position and momentum (and phase-space
variables in the nonrelativistic case). In some of the sets
A4 (U} G, G/H) (H C G C K) of covariant observables
“ideal” elements may be singled out that measure the given
property as sharply as quantum mechanics allows. Ideal ob-
servables satisfying different covariance conditions are
usually incommensurable (e.g., positions at two different
times), but as the example of phase-space observables
shows, it is possible to have a joint covariant measurement of
nonideal covariant observables (smeared out position and
momentum). There are, however, limits to this joint mea-
surability: If we choose G C K and X = G /H too large,
4 (U | G,X) may be empty. For example, there is no
phase-space observable that is covariant under the Galilei
group including time translation.

In the nonrelativistic case, Wigner—~Weyl quantization
isamap f+— F,, ( f) from functions on phase space to oper-
ators on Hilbert space, which is covariant under the entire
affine symplectic group (including the Galilei group). Thus,
by the preceding remark F,, cannot be an observable and
“probabilities” calculated via F,, may indeed be negative or
infinite. Since classically the coordinates of arrival at a
screen can be expressed as functions on phase space,
Wigner-Weyl quantization induces a screen “‘observable”
which is not positive (hence not an observable in the sense of
Sec. II) but automatically possesses the correct covariance
properties. It turns out that the operator F,, (y,, ) thus asso-
ciated to a subset o C x of the screen is just the integral of
the so-called probability current over o. The kernel for
F,(y,) in momentum representation contains a factor
1 ( ps + p3), which is clearly not positive-definite. Replac-
ing this arithmetic mean by the geometric mean +/ |p; p3 |
and hence by a positive-definite kernel, we obtain precisely
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the ideal nonrelativistic screen observable constructed
above.’

For the Wigner-Weyl quantization it is inessential
whether the hypersurface describing the screen is flat. But
we may also construct a positive-operator-valued measure
for any hypersurface having everywhere a timelike tangent
vector: The hypersurface is approximated by flat pieces on
each of which an observable is defined as the Galilei/Poin-
caré translate of a corresponding piece of “flat” screen ob-
servable. (The covariance condition for the flat screen ob-
servable makes the result unique.) The problem with this
approach is that the resulting measure need not satisfy the
condition |[F( £)||<|| f |l even if the trajectories of classical
free particles meet the given hypersurface at most once. This
shows that even for a flat screen the measurement of an effect
F(o), oeX, is not to be considered as localized near the
space-time set o but depends on the whole hyperplane X.
This phenomenon has a well-known analog in the case of
Newton-Wigner position observables: Since the Poincaré
translates of its projections do not commute, reassembling
such translates to form a measure on a curved, spacelike
hypersurface necessarily leads to probabilities »>1 [i.e.,
IFCHOIIA I fails].

Experimentally, a curved screen can be realized as a
curved piece of photographic film. In order to obtain a rea-
sonable theoretical description of such measuring devices, it
is necessary to take into account that upon “first contact”
with the screen the particle is absorbed or at least perturbed
in its free motion. One framework in which this influence of
measuring devices on the dynamics can be expressed is Da-
vies’ theory of quantum stochastic processes.? It would be
interesting to work out a theory of screens in this context and
to see its relationship to the covariant observable approach
presented above.

In the relativistic case, the question of locality that arose
in the discussion of curved screens suggests the following
line of research: There is a natural “second quantization”
procedure also for non-projection-valued observables.!” Ap-
plying this construction to the screen observables, we obtain
observables for the free quantum fields measuring the num-
ber of particles arriving at any part o € X of the screen. It is
easy to see that such observables are not strictly localized
near ¢ in the sense of quantum field theory. Are these obser-
vables in some sense approximately localized? Is it possible
to describe the counting of particles at a screen by an observ-
able that is strictly localized? These problems lead back to
the fundamental interpretation problem indicated at the be-
ginning of this section: the strategy of postponing the de-
tailed analysis of measuring devices in quantum mechanics
by studying at first only their covariance properties has its
analog in quantum field theory in the program of developing
an interpretation of the theory in terms of localization prop-
erties alone (i.e., in terms of a net of local algebras'®) and
postponing the working out of a detailed theory of measure-
ment. Thus quantum field theory and relativistic quantum
mechanics both intrinsically contain a description of the spa-
tio-temporal properties of physical systems. It would be in-
teresting to see whether these descriptions can be united in a
coherent view.
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The one-dimensional inverse scattering problem for an increasing potential
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The one-dimensional inverse scattering problem is considered for potentials that grow without
limit for large values of x. The Marchenko method is established for this class of potentials, and
several properties of the solution to the Schrédinger equation are developed. In the derivation of
the Marchenko equation an extension of the triangularity condition is used. Some brief remarks
on the relation to the inverse radial problem and the generalization to hard core potentials are

made.

I. INTRODUCTION

The inverse scattering problem on the whole x axis has
been analyzed extensively by several authors; for a review
see, e.g., Refs. 1 and 2. The starting point is the Schrodinger
equation,

-y +q=k%*, — 0<x< 0,

where the potential g(x) is assumed real and satisfies

f (1 + x)|g(x)|dx < co.

For such potentials the Marchenko equation can be con-
structed and the potential g successfully recovered from the
Fourier transform of the scattering data.’

The solution of the inverse radial scattering problem is
also well known, see Ref. 1 for a review. For s-waves this
half-line problem can, at least formally, be extended to a
scattering problem on the whole x axis, where the potential
on the complementary half axis is defined as infinite (hard
core). In this paper we consider potentials defined on the
whole axis that eventually go to infinity for large values of x.
Potentials of this kind have similarities with both the prob-
lems discussed above. Being defined on the whole x axis,
they are, of course, connected to the line problem. However,
many properties of our inverse problem have a direct coun-
terpart in the radial problem, since we have a perfectly re-
flecting potential (generalization of hard core). Thus, in this
sense the potentials treated here can be considered as inter-
mediate between, and extensions of both, the full- and half-
line problems, but it should be emphasized that the analogy
is partly formal.

The class of potentials discussed in this paper has been
studied by Kulish® in a short mathematical note. In this pa-
per we develop his results further and also extend the results
in several directions. We also give the proofs in detail, some-
thing that is missing in Ref. 3.

Problems and applications relevant to this class of po-
tentials can be found in, e.g., Refs. 4-6, and references given
there. Applications to the Stark effect are discussed in Ref. 4.
Interesting applications are also found in solitary-wave be-
havior in solutions to the nonlinear Korteweg—de Vries
equation.’*¢ We refer to these papers for more details.

We now introduce some definition and notation that are
useful later on. Let L denote the Schradinger operator
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d2
L= —d—x§+q(x),

where the potential ¢(x) is a real-valued, locally integrable
function and is defined on the whole axis. The potentials that
are of interest in this paper belong to the class @, which in
addition to the assumption above has the following property:

Q={glgeLinL}, and g(x)—>w, as x>} (L1)
The space L } is

L)= [q‘r |xPg(x)|dx < o, for all finite b].
(1.2)

In some applications below we strengthen the assump-
tions on the potentials somewhat so that in addition geL .
At any rate, these assumptions include most potentials of
physical interest, e.g., piecewise continuous potentials with
finite jump discontinuities.

Notice that we do not specify how the potential grows as
X—o0. It can grow arbitrarily fast or slow as long as it even-
tually goes to infinity as x— o0 . Nor do we assume the poten-
tial to be differentiable.

This class of potentials is, roughly speaking, well be-
haved as x— — oo, Where g is “small.” However, for large
positive values of x, g grows beyond all limits, and serves as
an impenetrable barrier. It is in fact possible to extend the
class O somewhat, so that the divergence point of ¢ can be
finite, i.e., g(x)— o0, as X—b < w0, and g(x)=oo for x> b,
provided the potential ¢ gives a differential operator of the
limit-point case (cf. Sec. II) at the singular point b. The
definition of L , spaces then also has to be modified accord-
ingly, but we do not pursue this extension any further, except
for some short remarks below.

Potentials of class Q are, as we discussed above, interme-
diate between the full-line problem and the radial problem.
The analysis presented in this paper follows the standard
treatment of the Marchenko formalism quite closely. How-
ever, it is important to take a fresh look at the proofs since
this class of potentials is not included in the classical inverse
problems. Thus, we go through the various steps in the in-
verse Marchenko formalism, to see what modifications and
extensions have to be made for a potential in class Q.

We define some more notations that are convenient for
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the analysis below. Let y (x,4) be a solution of the Schro-
dinger equation

Ly= —y"(x,A) +gq(x)y (x,4)

=y (x,A),

where A is an arbitrary complex number. Throughout this
paper a prime denotes differentiation with respect to x, and
the real and imaginary parts of a complex number are indi-
cated by indices 1 and 2, respectively,i.e.,A =4, + i4,. This
parameter A (also denoted E in the literature) is, in suitable
units, the energy in the Schrodinger equation. It is also con-
venient to introduce the wave number %, defined by 4 = k2,
and k = k, + ik,. For arbitrary real ¢ and b we obtain by
partial integration (a bar denotes the complex conjugate)

— 0 LXK 0,

b b
A [ birax= —ypzt+ [ WP+ gbPax
(1.3)
The real and imaginary parts are
a [ brar= -1 Ly
+ f (W' + gy, (1.4)
Azf pdx = — £ W (n P, (1.5)
where the Wronskian W (fg)=r(x)g(x) —f'(x)g(x)
is used.

This paper is organized in sections, and each section
provides an important step in the derivation of the Mar-
chenko equation. In Sec. II we introduce a solution, well
behaved at infinity, called the regular solution, which has
similarities with the regular solution in the radial problem.
Several properties of this solution are developed, some brief-
ly discussed in Ref. 3, some new. We continue in Secs. 111
and IV by defining the Jost solution and the Jost function,
and derive some of the specific properties they have for a
potential in class Q. The Marchenko equation is derived in
Sec. V by taking the Fourier transform of the relation
between the regular solution and the Jost solution, and using
the properties of the support of the Fourier transform. This
can be considered as a generalization of the triangularity
condition used in the standard treatment. In this context we
also introduce the theory of Hardy spaces, and for the conve-
nience of the reader we have collected some important and
useful results on Hardy spaces in the Appendix. Section V
also contains a uniqueness theorem. Some simple examples
of the theory are given in Sec. VL.

Il. THE REGULAR FUNCTION

At the beginning of this century Weyl” developed the
theory of singular boundary value problems. The results
were further extended by several authors, and for this paper
the results of Hille®® are the most interesting. Consider the
differential equation

Ly= —y"(xA) +gx)y (xA) =4y (x4), (2.1)
where g(x) is real and locally integrable [not necessarily
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belonging to the class Q defined in Eq. (1.1)]. [More gen-
eral differential equations of the type

—w"(x,A) + P (x)w'(x,A) + Q(x)w(x,A) = Aw(x,A)
can always be reduced to this form by the transform

y(xA) = w(x,ﬂ)exP{ — %J P (S)dS],

g(x) = Q(x) —P'(x)/2 + P*(x)/4.]

Weyl” showed that the following properties hold for the so-
lution of Eq. (2.1) restricted to x>0.

(i) For every nonreal value of 4, Eq. (2.1) has at least
one nontrivial solution of L 2(0, 0 ).

(ii) If for a particular value of A, Eq. (2.1) has two
linearly independent solutions (and hence all solutions) in
L ?(0, ), then this property holds for all values of A, real or
complex.

If the second property holds, L is said to be of the limit-
circle case at infinity, otherwise L is said to be of the limit-
point case at infinity. Thus in the limit-point case there ex-
ists, for every nonreal value of A, exactly one solution to Eq.
(2.1) that belongs to L 2(0, 0 ).

For a special kind of potential ¢(x), the theory of Weyl
can be extended somewhat. The following theorem shows
the existence of a L %(a,« ) solution for every a (see also
Refs. 8 and 9), and in Theorem 3 below we collect the main
result of this section.

Theorem 1: Let g(x) be real and locally integrable in
[a,), and let g(x)—> o0 as x—>co. Then for all complex A
there exists one and only one linearly independent, nontri-
vial solution yeL %(a, 0 ) to Ly = Ay, x>a. Furthermore, y'
and|g — A | yeL?*(a,0).

Notice that no boundary conditions are imposed on y at
x = a. The theorem can be further extended so that the sin-
gular point where g(x)— o can be finite, as commented
upon in the Introduction. The proof of this theorem has
similarities to the one given by Weyl” and Hille,3° but several
extensions occur; intermediate results in the proof will be
used later on in this paper, so we prefer to give the proof in
detail.

Proof: The potential g(x) defines an operator L of the
limit-point case at infinity, see, e.g., Coddington and Levin-
son.’® The uniqueness of the solution is therefore already
clear by the results of Weyl[ (i) and (ii) above], and to com-
plete the proof we have to prove the existence of such a solu-
tion (in fact, only real values of A are necessary, but for later
use we treat also complex 4).

Let y,(x,A4) and y,(x,A) be solutions of Ly = Ay for
x>a, satisfying the boundary conditions

»i(@ai)=0, yj(ad)= —1,
y(ad) =1, pj(ad) =

The solutions y, (x,A), i = 1,2, are linearly independent,
since

W, (yu32) = W.(y, ) =150,
and any solution (up to a multiplicative constant) of
Ly = Ay can be written as

Yy (xA) =y(xA) + my,(x,4).

(2.2)
2.3)

(24)
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We will now show that it is possible to choose the constant m
so that y(x,4)eL %(a,» ).

Let A =A, +i4, be a fixed complex number, b and ¢
real numbers such that a<b<c < «, and choose b = b(4)
such that

g(x) >4, for all x>b. (2.5)
Equation (1.4) gives
‘Re{y (@A) y'(cA)} —Re{y BA) y (b2}
=J: [ + (g — 2D | [*1dx. (2.6)
Define
F (m,c) =Re{y (cA) y'(c.A)}, 2.7)

which depends on m according to Eq. (2.4), and defines a
quadratic form in m. In the complex m plane, F (m,c) =0
defines a circle C:

m—m,|=r,.

The center m, and the radius r, of the circle C, are, after
some algebra, found to be

m.= — (¥ ¥, + 5 V3 )xae/QRelyyi ),
r(.‘ = |2 Re{ }_’Z-yé}x=c|_l’
Two possibilities can now occur.

(i) Re{ y,»3 }, _ . <Oforallc>b. In this case we obtain,
by means of Eq. (2.6) applied to the solution y,(x,A),

J: [IJ’5|2+ (q—/ll)|.V2|2]dx< —Re{ }72)’5}::=b’

for all ¢>b,

and, letting c¢—>o0, we obtain that yp; and
VIg — A,] y,€L*(b,0 ), and they obviously also belong to
L?(a, ). In this case the theorem is proven since y = y, is
the solution satisfying the theorem.

(ii) Re{ y.p5 }, . >0for somec'>b. Now Re{ y,y; }is
amonotonically increasing function for x> b, since g(x) > 4,
for x> b, and we conclude that Re{ y,y; }. _ . »0forc>c'>b.
From the definition of F (m,c) and Re{ y,y; }, ... >0, for
c»c’ we have that

inside ,
outside] Cer Jor c>¢’.

For all m values inside C, we thus have

f[|Y'|2+(q—ll)|y|2]dx<—Re{l-l}"}x=,,, c>c'.
b
(2.8)

Furthermore, we see that C, CC,, for ¢;>¢,>¢), ie., the
circles C, are nesting for increasing values of ¢. The family of
circles C, then converge to a single point m (A1), as c—w. In
fact, Re{ y,y;}, _. is monotonically increasing for large
values of ¢ and its limit must be + oo, s07,—0, otherwise all
m valuesinsidethecirclelim,_, _ C, would give us a solution
Y =y, + my,eL *(a, « ), which contradicts the fact that L is
of the limit-point case at infinity. For this value of

m =m(A),bothy and|g — A,[yeL (b, ), by Eq. (2.8),

F(me)s0
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and they obviously also belong to L2%(a,x), and the

theorem is proved.
From the proof we see that the solution
¥ (x,A)eL *(a, ) has the following property
Ly =P<0, for x>b(A), (29)
Ix

and no other linearly independent solutions have this prop-
erty.
The function m (1) plays a fundamental role in the anal-
ysis presented below. We now prove some important proper-
ties of this function. Equation (2.9) shows that the positive
function | y |? is monotonically decreasing for sufficiently
large x. Thus, | y |*> must have a limit as x— oo, which neces-
sarily has to be zero, since yeL ?(a, o0 ). The function m (4 is
thus

m(d) = — im{y,(x,A)/y,(x,A)}. (2.10)

On the other hand we have

mA) =W, (yw) =W, (yy)=y(ad).
From Eq. (1.5) and Egs. (2.2)—(2.4) we see that

(2.11)

A, f yPdx= — LW, (55) +Imlm)). @12)

As x— o, the left-hand side converges and thus W, ( .y )
must converge as x— o . However, this limit has to be zero,
since y—0 as x— 0, as proved above, and | y'| is bounded for
all sufficiently large x. To see this, we use the differential
equation Ly = Ay to prove the following equation for a gen-
eralA +4,+il;:

d, , d ;
El}’ I>=(g—40 - |y I>+ 24, Im{y y'}.
Equation (2.9) gives, for x>b(4),
Y A <]y (B P +u2£ Im{y 7'}dt

<|y'<bm12+z|/12|£ ]|

Both y and y’ are in L %(a, ), the integral converges, and
| »'| must be bounded for sufficiently large x (we will actual-
ly prove below that lim,_,_|y’| =0). As a corollary to
Theorem 1 we thus obtain, by letting x— o0 in Eq. (2.12),

Im{m(,t)}=,12f°° |y [2dx. (2.13)

We see that the imaginary part of m(A4) and A have the same
sign. Furthermore, it is shown in Hille® that m (1) is a holo-
morphic function in the upper and lower half planes of A and
there satisfies

m(d) = m(Z), Im{A}##0. (2.14)

We can in our case say even more. The function m(A) is
closely related to the spectral function of the following self-
adjoint operator 4 on [a,» ):

Ay=1Ly, y'(ai)=0. (2.15)
Hille® shows that the spectrum of A consists only of a point
spectrum of isolated points {4, }, bounded from below, and
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with no limit point in the finite A plane. All A,’s are, of
course, real. Furthermore, Hille? shows that the solutions
y: (x,A) [and p] (x,4)], i = 1,2, for any fixed value of x, are
entire functions of A of order  and of finite type (normal
type of this order).

We now state an important property of m(A). For the
proof we refer to Hille.®

Theorem 2: The function m(A) is a meromorphic func-
tion with simple poles at {4, }. It satisfies Eq. (2.14) for
A¢{A, }. The function m (A) has the representation

o,

m(4) ;/1_/1", (2.16)
where the sum converges absolutely for all A¢{4,}, and
where the residues ,, are real and nonpositive for all ». Here
o, are the jumps in the spectral function corresponding to
the self-adjoint operator 4 in Eq. (2.15).

From Eqgs. (2.1)-(2.4) it is easy to obtain

m(u) —m(A) = (u—A4) f Y (xp) y (x,4)dx,

and we get as y—A

d (-]
—m(A) = g
7 m(A) L Y (xA)dx

Thesolutiony (x,4)€eL *(a, ) constructed in Theorem
1 and given by Eq. (2.4) with m = m(A) has a unique con-
tinuation to the whole real axis ( — 0, o ). Furthermore, it
is a meromorphic function of A and its only singularities are
simple poles at {4, }, which have no limit point in the finite A
plane. These poles are, of course, not of any importance in
our scattering problem, but have their origin from the con-
struction of the solution y (x,41). However, we can remove
these poles by multiplying the solution y (x,4) with an entire
function with simple zeros at {4, }, and nowhere else. The
existence of such an entire function is given by Weierstrass’s
factorization theorem.!! In the following theorem we collect
the main result of this section.

Theorem 3: For every real a and every complex A, there
exists a solution geL *(a,0 ) to L = A$, where g satisfies
the assumptions in Theorem 1. It is possible to choose this
solution such that ¢(x,A) and ¢'(x,4) for each fixed x are
entire functions of 4; ¢ (x,A) is unique up to a multiplication
with an entire function of A without zeros, and ¢ can be
chosen real for real A. The ¢(x,1) is called the regular solu-
tion of the scattering problem.

The regular solution has a number of important proper-
ties, some of which will be useful later on in this paper. First
we prove the following lemma.

Lemma 1: Let ¢(x,A) be the regular solution found in
Theorem 3 and assume that a is chosen such that ¢(¢) >0 for
t>a. Then¢’'(a,A) + ik$(a,A) hasno zeros as a function of &
in the closed upper half plane of %, i.e., k,50 (1 =k ?).

Prooft Assume that k is a zero. Then ¢'(a,k?)

= — iké(a,k?), and by use of Egs. (1.4) and (1.5) we ob-
tain

kolpak )2 = —f [/ + (g — A0 |$I?1dx,
kilp(ak D)2 = — 4, f |2,
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since lim,_, _ ¢'¢ = 0 as proved above. The second equation
implies that k; = 0, since £,>0. The first equation is then
simplified to

kol (a2 = —f“ (62 + (g + (k»)?)|g[]dx.

However, this equation cannot be satisfied for any nontrivial
¢ since g(x) >0 for x>a; we have a contradiction, and the
lemma is proved.
The next lemma is a simple consequence of Theorem 2.
Lemma 2: Let A be the operator defined in Eq. (2.15)
and let the spectrum of 4, o( A4 ) ={4,}=_,, be ordered
such that

A <Ay

Then Im{km(A1)}>0 for all k, provided k,>0, and
{4 1> — A;. (Do not confuse the first two points of the spec-
trum A, and A, with the real and imaginary parts of the
complex number A.)

Proof: Theorem 2 provides us with a representation of
m(A) in terms of the spectral function
= 0,

m(d) = <

@ ,.2' 1 A=A,

where {4, } are the values of the point spectrum of 4 and
{0, } are all nonpositive numbers. Simple calculations give
A=k?

& A+IA|

Im{km(A)} kzngla,, i AT’

for all k,»0, |4 |> —4,,
and the lemma is proved.

Note: The result of the lemma is in fact valid for a larger
class of self-adjoint operators 4 for which y'(a,A) =0,
namely those operators that have a spectrum that is bounded
from below. In such cases the representation of m(A4) is

dp (1)
t—A’

>0,

m(i) =

and the lemma can be proved in analogy with the proof
above.

In the rest of the paper we assume for simplicity that
A,>0. There is in fact no loss of generality in this assump-
tion, and an analogous treatment can be made for 4, <0, but
the details become more complicated.

Lemma 3: The regular solution ¢(x,A) of Theorem 3
satisfies

likp(a,A) — @' (aA)|/|ikd(aA) + ¢'(aA)|<], (2.17)
for all k,>0. Here a is any number such that ¢(#) >0, fort>a.

Proof: From Lemma 1 we see that the denominator of
Eq. (2.17) is never zero, so the quotient is well defined. Fur-
thermore, we see from Eqgs. (2.2)—(2.4), and the construc-
tion of the regular solution ¢(x,4), that

m(d) = —¢(ad)/¢'(al). (2.18)
From Lemma 2 we have Im{kn:(1)}>0, or equivalently

| —ikm(A) — 1|/| —ikm(A) + 1|<1.

However, this inequality is equivalent to Eq. (2.17), and the
proof of the lemma is completed.
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Lemma 4: The regular solution ¢(x,4) of Theorem 3
satisfies

ik (x A)e~"*|/|[ikp(a,d) + &' (a,A)]e~ | < o=,
for all x<a, k,>0. Here K is a numerical constant,

0(x) =f (t—x)|q()]ds,

and g is any number such that g(z) >0 for 4.

Proof: The regular solution ¢ (x,4) satisfies the Volterra
equation

#(xA) = ¢(a,A)cos k(a — x)

—¢'(a,A) [sin k(a — x)1/k

f s‘“"“ Snk(=X) g d. (2.19)
Define _
h(xA) = kp(x )0/ ikp(ad) + ' @A)].
(2.20)
Then h(x,A) satisfies
h =—={1 2k(a — x) ikg(al) ¢(a9’1)
oy =3 (1+e :k¢(a,z>+¢(a,z>)
+ f Dy (1 — x)g(Dh(A)ds,
where
Dy (x) = (1/2ik) (% —1). (2.21)

For x<a and k,>0, we have by Lemma 3
Ih(xA)|<1 + f Dt —x)| lgO]| e D|de. (222)

Using the estimate
|Dw (x)|<Kx/(1 + |k |x)<Kx,
for k.0, x>0, (2.23)

where X is an appropriate constant independent of x and %,
we obtain by iteration

|h(x,1)|<exp{Kr (t—x)|q(2)|de },

and the lemma is proved.

We close this section by proving an additional property
of the regular solution.

Theorem 4: Let ¢ (x,A ) be the solution of Theorem 3 and
assume that the potential g belongs to class Q. Then the inte-
gral

f T gx)d(xAre- " dx,

is convergent for all fixed A = & 2, such that k,>0, and holo-
morphic in k, > 0.
Proof: We define a real positive function

g(xA) = [u'(x,A) + 2iku(xA)[?
= | (x,A) + tkd(x,A) %
where
u(xA) =d(xA)e~ ™
Here u(x,t) satisfies

—u" - 2ku’ +qu =0. (2.24)
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Simple calculations give
g 0l) =g (L |g(r ) — el x ).

The solution ¢ satisfies Eq. (2.9) and we have

£2'(x,A)<0, for x>a, and k,>0,
where a is defined such that a>b(4) in Eq. (2.5) and
¢(x)>0, x>a. The positive function g(x,A4 ) is thus monoton-
ically decreasing, the limit lim, , , g(x,4) must exist, and
we show that this limit has to be zero. For real values of k this
is easy to see. Then |u| = |#| and [¢|—0 as x— o, since both
¢ and ¢'eL %(a, ). Thus |¢'| converges and this limit must
be zero, otherwise ¢'¢L *(a,x ).

From the differential equation in Eq. (2.24) we obtain
the following integral expression by partial integration:’

[[ w2k + glupras = azz2,
and v:e choose a as above. The real and imaginary parts are
f (|u'|? + qlu|?® + 2k, Im{@u'})dx
] - [ 1 d

2 dx
2k, fb Im{iu'Ydx = {k,|u)® + Im{au'}}|ZZ2.

For real k we have already proven that lim, ,  g(x,4) =0,
so assume K, > 0, and eliminate the integral over Im{iu'}, to
obtain

— |u]* =k, Iul’] =b, (2.25)

xX=aq

(2.26)

b
k, f ('] + glu)dx

— (L i L g~ by TG} )|

Xmg

This equation can be simplified by using {cf. the derivation
of Eq. (2.13)]

A f " 1#dx = mB), .

We get

k, f (7 + glutyax
- —;- eyt ;;"— G222 + &, Im{F(a)8 (a)}e*=

— 2t [ lgP .

The integral on the left-hand side either converges to a finite
limit or diverges to + o, as b— w0, for every potential g in
class Q. The right-hand side, however, cannot diverge to

=+ oo for k, >0 as b— o0, due to Eq. (2.9), and we conclude
that both u’ and u\/[g[€L %(a, ), and, hence also u. Since
both u and uw'el ?(a,0), lim,_, _ {u| =0, and again, since

g(x,A) has a limit, |«’| must converge as x— o0, and this

limit must be zero, since u'eL 2(a, » ).
We collect the conclusions made above and find that
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b
f g(x)p(x,A)e™ *dx

= [4'(x,A) + 2iku(x,A)]|5=?2

converges as b— oo, and the first part of the theorem is prov-
en.

The remaining part of the proof is to show that the inte-
gral over the interval ( — «0,a] is convergent. With the same
notation as in the proof of Lemma 4 and the estimate Eq.
(2.23) we get

l(xA)|<1 +Kr (t—x)|g(0)] [h(1,4)|dr.

There is no loss of generality assuming @ >0 and by use of
Lemma 4 we get

Ih(xA)|<1 +Kft|q<m h(eA) |de
0

+K1xl [[ lg@o! Iheso
<1 +Ke’“"°’Jdt lg(t)|dt
0
+ K |x]| f lq(8)] |h(2.A)|dt

<C+K|x| f ()| |h(EA) dt,

where the constant C is independent of x and 4, but depends
on a and g. Define H(x,A) = |h(x,4)|/[C(1 + |x|)] and
Q(x) =K (1 + |x|)|g(x)|. We obtain

HxA)<1 + f o) H(tA)dr.

Iteration gives

H(x,/l)<exp[ J: Q(t)dt ]<exp[ Jj ) Q(t)dt] .

For a potential in class Q we thus get
|#(x,A)e~**|<K'(1+ |x]), fork,»0, x<a,

where the constant X ' is independent of x, but depends on ¢,
a, and k. Since geLlnL] we can conclude that
5% . gqpe "= dx is finite and the integral §= _ gde ~**dx
is convergent. The holomorphic properties now easily follow
from above and the theorem is proved for all potentials in
class Q.

We see that in the integrand both the potential and the
exponential function are increasing functions of x. However,
the regular solution ¢ compensates this increase by a de-
crease, as x— oo, 80 that the integral in Theorem 4 converges.

ll. THE JOST SOLUTION

In the preceding section the regular solution of Ly = Ay
was investigated. This solution has the property of being well
behaved at large positive values of x. The Jost solution is
instead well behaved at large negative values of x. For the
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Jost solution it is more convenient to let the dependence of

the parameter A be in terms of the wave number k(4 = k ?).
For convenience we introduce three positive, monotoni-

cally increasing functions a(x), f(x), and y(x) defined as

a (x) =J. |g(2)\dt, (3.1)
B (x) =f (x —)|q(2)|dt, (3.2)
¥ (x) =f (1 + )t Dlg(o|de. (3.3)

The main result of this section is collected in the follow-
ing theorem.

Theorem 5: For each &, k, >0, there exists a unique solu-
tion f(x,k), the Jost solution, to the differential equation
Lf=k?2f, where q is in class Q, such that f satisfies the
boundary condition

lim f(x,k)e*™ =1.

X— — oo

S (x,k) satisfies the integral equation

f(xsk) =e—ih+fx

3.4)

sink(x —1) k(,f =D 40 £ (rk)ar.

(3.5)

For each fixed x, f(x,k) and f'(x,k) are holomorphic in
k, > 0 and continuous in k,>0, and f(x,k) satisfies

fGe k) =f(x,— k), for k,>0. (3.6)

7 Furthermore, f(x,k) satisfies

| fxK)e™ — 1)< [a(x)/|k [1e* /%), k50, k #0,

(3.7
| flx,k)e™ — 1|<K'[1 + max(0,x)]
X E+Dy(x)/(1 + |k|), k30,
(3.8)
| f'(x,k)e™™ + ik |<K “[1 + max(0,x)]
XM+ 2(x), k,>0, (3.9)

where K, K’, and K " are appropriate constants independent
of x and k. We also have that

d o
Ef(x,k) = flx,k)

exists for all k,>0, k #0, and that £ f (x,k) is continuous in
k,>0 with lim, f(x,k) =0. If furthermore, geL } then
f (x,k) exists and is continuous at k = 0.

Proof: The proof of this theorem follows closely the
proof of the corresponding results for the full-line problem
with more well-behaved potentials given by Deift and
Trubowitz.? We refer to their paper for details, and give here
only details of the proof where alterations from Ref. 2 are
needed. We thus refer to Ref. 2 concerning the existence and
uniqueness properties of £, as well as its holomorphic prop-
erties.

By standard iteration of the Volterra equation in Eq.
(3.5) we easily get Eq. (3.7) by means of Eq. (2.21) and the
estimate

|Dk (X)|<l/|k ls k2>0’ k 5£Oa x>0
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To derive Eq. (3.8) we start by iterating the Volterra
equation using the estimate Eq. (2.23). We get

| fix,k)e™| <exp{ KB(x)}. (3.10)

By means of the Volterra equation, Eq. (2.23), and Eq.
(3.10), we now obtain for all x>0

| fixk)e™™ — l|<KJ‘. (x — 1) |g(®)| | fAtk)e™ |dt
<Kx f 1g(O] | ftk)e™ |dt

+K f (= 0lg(] | flrk)e™ |de

<Kx ¥ Pa(x) + C,,
for some appropriate choice of the constant C,, which de-

pends on g, but not on x and k. For x<0 we similarly have
some constant C, such that

| f (x,k)e — 1|<sz (—8)|g(0)|dr.

Equation (3.8) follows from these inequalities and Eq.
(3.7),and a (x)< B (x+1).
The estimate Eq. (3.9) can be obtained from the identity

f(x,k)e™ + ikf(x,k)e™™
= r q(t) flt,k)e*®>—" g,

which follows from Eq. (3.5). By use of Eq. (3.8) we get, for
k2> o,

| f(x,k)e™ + ik |
<|k||Axk)e™ —1|

+f lg()] | f(tk)e™ — 1|dt + a(x)

<K "[1+ max(0,x)]eXf =+ y(x)

+K~f‘ (1 +[e]Dlg(0) |2+ D y (1)t
- 1+ k|

from which we obtain Eq. (3.9). )

‘What remains to be proved are the properties of f (x,k).
However, they are quite similar to Ref. 2, and we do not
repeat the details since the generalization is obvious, and the
theorem is proved.

From Eq. (3.8) we see that A(xk)e™ —1
€L ?( — o0, ) as a function of k,, for each fixed value of x,
and k,>0. Furthermore, f (x,k)e™ — 1eH ? for each fixed
x. For the convenience of the reader we have collected some
important results on the Hardy space H ? in the Appendix.
From Theorem A.l1 we find that there exists an
L?( — 0,0 )-function A(x,t) of ¢, with support in
( — o0,x], for each x, and we have the representation

b4

f(x,k)=e""‘"+f A(x,t)e ™ dt. (3.11)

For real £k the Wronskian between the two solutions
[f(x, £ k)is ’

W (f(xk),f(x,—k))=2ik, k real, (3.12)
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so for real k #0, we see that JS(x, + k) are two linearly inde-
pendent solutions of Lf = k %f.

IV. THE JOST FUNCTION
We define the Jost function F (k) as usual:

This function is holomorphic in &, >0 and continuous in
k, >0 as seen from the analysis in Secs. II and I11.
Theorem 6: The Jost function F (k) defined in Eq.
(4.1) has the following properties for a potential ¢ in class Q.
(i) F(k) =F(—k), k,»0. (42)

(ii) F(k) = f T e A)e-®dr, k30, (43)

(iii) The only roots of F(k) in k,>0 are simple and
purely imaginary (except possibly kK = 0).

(iv) F(k) has a root in k, > 0 if and only if #(x,4) is in
L*(— w,).

(v) For every a,

F(k) = — e~ "*[ik¢(a,A) + ¢'(a,A)]1[1 + O(1/|k ])],
k,>0. 44)
Proof: Property (i) is a simple consequence of the fact

that disevenin k (remember A = k ?) and real for real A, and

Eq. (3.6).

To prove Eq. (4.3) we assume for a moment that & is
real # 0. Equations (3.12) and (4.1) and the fact that ¢ is
even in k and real give
2ikd(x,A) = F( — k) f(x,k) — F(k) f(x, — k), k real.

(4.5)

Insert Eq. (3.5) and use Theorem 4

2ik¢(x,A)
=F(- k)e " — F(k)e™™

+ 2ik f smrx—h k‘]’: =9 J(é(rA)dr

= e—"kx[ F(—k)— r g()p(tA)e™ dt + 0(1)]

- e""‘[ F(k) — Jw g(Dg(tA)e~* dt + 0(1)],

as x—oo.

Since both ¢ and ¢’ go to zero as x— 0, Eq. (4.3) follows for
real k #0. However, the integral f= _ g(£)$(t,A)e~*dt
also has a unique analytic continuation in the upper half
plane of k as shown in Theorem 4, and F(k) is continuous
on the real axis; thus we have proved (ii).

To prove (iii) we assume that F(k) = 0. First assume k
is real #0. Then by Eqs. (4.2) and (4.5), ¢(x,k2) =0,
which is the trivial case. Thus the root cannot be real 0.
Now assume k,>0, and use Eq. (15) with
y (xA) =f(x,k). We get

2k K, f’ | k) |2 dx
= = (i/2){f(a,k) f'(a9k) _f'(a9k) f(ayk)}’
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since the Wronskian vanishes for the lower limit for k, > 0.
We also have from Eqs. (4.1) and (2.18) that

F(k) = —¢'(ak*){m(k?) f'(a.k) + fla,k)} =0,

and since ¢'(a,k %) #0, for k, > 0 [see the discussion below
Eq. (2.15)1, we have

2k.k, f | flx k) P dx = — | f(a,k)|* Im{m(k?)}.

(4.6)

Equation (2.13) shows that Im{(k 2)} has the same sign as
Ay ie., Im{m(k?)}s0, for k,s0, k,>0. Equation (4.6)
then gives that k, = 0, and all roots are purely imaginary.
We now prove that all roots of F(k) in k, > 0 must be simple.
Assume that & is a root of F. Then according to Eq. (4.1), ¢
and f are linearly dependent and there exists a constant
A #0, such that

S(x k) =A (x,k?).

We also use the following identity:
g 4 W, f$) = U xhp k).

— W (8,f) =
We can now compute (d /dk) F(k) = F(k) at the root

(4.7)

dx dx

k:
F(k) =W, ($,f) + W, (8, f)

=2kA r &*(x,k ?)dx+#0, (4.8)

where we have used Eq. (4.7), the derived properties of f as
Xx— — oo and ¢ as x— o0, and we conclude that the roots of
F are simple; thus (iii) is proved.

Assume that & is a root of F such that k, > 0. For this
value of k Eq. (4.7) holds. On the left-hand side of Eq. (4.7)
there is a function €L 2( — «,a), on the right-hand side a
function €L %(a, oo ); thus ¢ (x,k >)eL 2( — o0, 0 ). We prove
the converse by assuming F(k) 50, k, > 0. Then the kernel
of the resolvent

G(xx') =f(x_,k)p(x, k?)/ F(k),

wherex _ (x, ) = min(max) (x,x’) is well defined. For any
geL?( — w0, ) we have

[(L—-4)""gl(x)

- f G(x.x")g(x')dx’
=F~Yk) [;b(x,xl) f f(x'k)g(x)dx'

+ Ak f ¢<x',z>g(x'>dx'],

and no nontrivial L?( — 0, ) function exists satisfying
Ly =Ay.

We also show that for k = O there does not exist any
eigenfunction, i.e., k = Qis never in the point spectrum of the
self-adjoint operator L on ( — o0, ) without boundary
conditions. This is easy to see, since we have f(x,0)—1, as
x— — o0; a second solution is given by

f(x,0) fx [f(2,0)] “%dt—x, as x— — oo;
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and Ly = 0 has no nontrivial solution in L ?( — 0, ).
Finally, we prove (v) simply by using Theorem 5:
F(k) = ¢(a)e=*[ f'(a,k)e™ + ik ]
— ¢'(ad)e ™[ f(a,k)e™ — 1]
— e~ *{ikp(a,A) + ¢'(a,A)}
= —e~*{ikg(a,A) + ¢'(a,A)}
x{1+ o0/},
and (v) and the theorem are proved.

Note that by Lemma 1, for large enough |k | (and a
proper choice of @), F(k) cannot be zero, and there are at
most a finite number of roots to F(k) in the upper half plane
of k. We can rephrase this by saying that the self-adjoint
operator L on L ?( — 0,00 ) (no boundary conditions) has
only a finite number of eigenvalues.

The fundamental relation between the solutions of the

scattering problem given by Eq. (4.5) is more conveniently
written as

¢(x’k) =f(x! - k) _R(k)f(x)k)’ k real, (4-9)

where we have defined the scattering solution ¢ and the re-
flection coefficient R for real & as

P(x,k) = — 2ikd(x,k2)/ F(k), (4.10)

R(k) =F(—k)/ F(k). (4.11)
Equation (4.9) has, of course, the physical interpretation
that the solution ¥(x,k) consists of two parts, one incoming
wave, represented by f (x, — k), and one reflected wave, giv-
enby — R(k) f(x,k).

From the definition of ¢ in Eq. (4.10) we immediately
see that ¢ can be continued analytically into the upper half
plane of k and thus ¢ is meromorphic in k, > 0 with simple
poles at the roots of Fin k, =if,, B, >0,i=1,.,n (n
bound states), and the residues are [use Egs. (3.11), (4.7),
and (4.8)]

- l:f(x;iﬂv)
52 o F2iB, )dt
= = l,.f(xviﬂv) Mv

=— i(e””" + f A (x5 dt) M,
(4.12)
Since the left-hand side of Eq. (4.9) is a meromorphic
function in &, > 0, there must be a cancellation of the singu-
larities in the right-hand side of the equation, since the right-
hand side, in general, is not defined for these complex %.
The reflection coefficient R (k) satisfies

| R(k)| =1, kreal, (4.13)

due to Eq. (4.2), which is nothing but energy conservation
in our problem, and the fact that we have an impenetrable
barrier. From the definition of R (k), we see that R (k) isin
general only defined for real k and for such & we have, due to
Theorem 6,

RCS{¢(x’k) }k= o, =

ke 8/ (8A) — k(@A) [|

1
oGh)
¢'(aA) + ikd(a,d) |k |
=R_ (k) + R,(k), k real, (4.14)
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where R is defined as

R —¢tka #'(aA) —ikg(al) .
T ¢'aA) +ikg(ad)
In this expression a acts as a parameter.
However, from what has been said above, R _ (k) canbe
continued analytically into the upper half plane of k, and
there it satisfies, due to Lemma 3 (a is assumed to be chosen
according to the assumptions in Lemma 3),

| R (k)e=* <1, for k,>0. (4.16)

The other part of R (k), here called R,(k), belongs to
L?*( — w,%). Do not confuse R,(k) with the imaginary
part of a complex number. The index 2 here is used to indi-
cate that the function R, (k) belongs to L ?( — o0, 0 ). Simi-
larly, the index o on R (k)is to indicate that R (k)
X exp{ — 2ika} is bounded in the upper half plane of k. No-
tice that, since a is arbitrarily large, R, is decaying, as a
function of k, faster than exp{ — 2k,a} for any real a.

(4.15)

V. THE MARCHENKO EQUATION

We start this section by proving an important theorem,
which has certain analogs to Theorem A.1 in the Appendix,
cf. also Ref. 12 on analyticity in tubes.

Theorem 7: Let u(z) be holomorphic in Im{z} > 0 and

ju(z)|<K, in Im{z} >0,
i.e., ucH= . Then the Fourier transform

ak) = J-w u(x)e " dx,

is a tempered distribution with support in [0, ).

Proof: 1t is clear that ie #'[.¥ = #( — «,) is the
Schwartz space, and %’ is the space of tempered distribu-
tions], since the function ue.#’ (Theorem A.2 in the Appen-
dix), and the Fourier transform maps %’ into .*. We show
that

r a(k)p(k)dk = r u(x)$(x)dx =0,

for all functions ¢(k)€.¥ with supp{¢} C ( — ,0). Forev-
ery such ¢ there exists an € >0, such that ¢ =0, forx>» — ¢.
We also have that as a function of the complex variable

z=x+1iy,

d(z) = F d(kre= " dk = o b(k)e™ ™ dk,

- o0

is well defined for all z, y >0, and, furthermore, $(z) is holo-
morphic in y > 0. For >0, we have

|d(x + ip) |<f_ |#(k)|e® dk<Ce~*,

and similarly for all derivatives of ¢. Thus we get for y>0

18(x + i) |<Cye= (1 + 2|,
for all integer N»0.

Here Cy is a constant dependent on N and ¢. Forevery y > 0,
we have
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f u(x):;i(x)dx = f u(x + t:v)tz(x + iy)dx,

by the Cauchy theorem, the assumption |u(z)|<K in y>0
(and by Theorem A.2 in the Appendix a.e. on the real axis),
and the estimate on ¢(x + iy) above. Now choose N large
enough so that

Jm u(x)&(x)dxl<Ce"”, for all y >0,
and we conclude that
f " aU0gk)dk =0, for all f(k)eS,

supp{$} C ( — «,0).

Therefore, supp {#1} C [0, ), and the theorem is proved.

Theorem 7 is not stated in its weakest form. The
theorem also holds for functions u with certain polynomial
growth along the real axis,'? but the present formulation of
the theorem is sufficient for our purposes.

Note that a holomorphic function f(z) in Im{z} >0,
defined by f(z) = u(z)e, where u(z) satisfies the assump-
tions in Theorem 6, has supp{ f}C [#,0 ).

The relation between the scattering solution ¢ and the
Jost solution f for real k is given by Eq. (4.9)

P(x,k) = flx, — k) — R(k) f(x,k). .0

By Theorem 6 and Lemma 4 we find that ¢ as a function of k,
for fixed x<a and in the absence of bound states, satisfies

[¥(x,k)e ™ **|<C, in k>0, (5.2)

where the constant C is independent of & (but depends, of
course, on x, 4, and ¢).

We are now ready to tie everything together and derive
the Marchenko equation for our scattering problem. This is
done simply by taking the Fourier transform of Eq. (5.1),
after the following rearrangements and use of Eq. (3.11):

Y(x,k) + R (k)(e“""‘+f A(x,t)e"""dt) — glkx
= —Rz(k)(e_"‘"+J. A(x,t)e‘”“dt)
+f A(x,t)e™ dt.

If no bound states are present we take the Fourier transform

o= f " fkye- dk,

for y < x and apply Theorem 7. Since the parameter a that
appears in R, (k) can be arbitrarily large, it suffices to con-
sider the case x<a. We get

0= —Ry(x+y) — f A ()R, (¢ +y)dt + 274 (x),

or

Axy) = Ao(x +9) + f A(x,0) Aot +y)dt, y<x,
- (5.3)
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where

A== RUsemak=—_Ry»), (54
rJ- o 27

and where the last equality holds for y < 24 due to the sup-

port of the tempered distribution R_ ( y). When bound

states are present at i8,, i = 1,...,n, we replace 4,(y) by

4,0 =4,0) + 3 M, &7,

v=1

where the normalization constant M, is given by Eq. (4.12)
L -1
M, = { f SfLiB) dt] .

To see the correspondence and the similarities between
the formalism presented here and the Marchenko equation
for the radial scattering problem for s-waves, we write Eq.
(5.4) as

l o«

AO( y) ='2—— [R(k) —Rgo (k)]e—'kydky y<2¢1,
T ©

(5.5)

where R (k) is given by Eq. (4.15). Compare this expres-
sion with the corresponding expression for the radial prob-
lem, with S-matrix S(k) (see Ref. 1)

1 L)

Ag(y) =— [S(k) — 1]e~ ™ dk.
27

This expression can be obtained formally from Eq. (5.5) by
introducing the boundary conditions for the radial problem
in Eq. (4.15) ata =0, ie., #(0,k) =0, and ¢'(0,k) = 1.

The reconstruction of the potential from the solution of
the Marchenko equation is now identical to the standard
case.! The potential is obtained from

g(x) =22 [ Ax0)), (5.6)
dx
and A(x,t) satisfies the hyperbolic equation
d d
( 2 ’d‘ﬁ) A =g(x) A6, t<x. (5.7

Finally, we prove a uniqueness theorem for the potential
g in this class Q.

Theorem 8: A potential ¢ (in class Q) without bound
states is uniquely defined by its reflection coefficient R (k).

Proof: Let ; and f;, i = 1,2, be two scattering and Jost
solutions, respectively, giving the same reflection coefficient
R(k), where |R(k)| = 1. Introduce

u(x,k) = [¢,(x,k) — ¢,(x,k) Je ~*,
h(x,k) = [fi(x,k) — f(x,k)]e™.

In the absence of bound states, u(x,k)eH*, see Eq. (5.2),
and A(x,k)eH 2. Furthermore, we have for real k,

u(x,k) = h(x,k) — R(k)e ***h(x,k). (5.8)
The left-hand side is a boundary function of an H> function,
which alsoisin L 2( — 0, ), since the right-hand side is in
L?( — w0, ). The rest of the proof is an application of the

Plancherel theorem (see the Appendix) and the results on
the support of the Fourier transformation. We get
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0= Jw ﬁ(x,t)fz(x, — 8)dt =27 fw u(x,k)h(x,k)dk

=2 f T URGRR) | = RGK)e— 2 2(x k) |dk.
On the other hand we have
f " uGek) 2k

- f T 2k
— 2 Re{R(k)e~**h2(x,k)}1dk =0,

so wu(xk)=0 and ¢,(xk)=¢,(xk). Thus gq,
= (¢7 + k*,) /¢, = g, and the theorem is proved.

Note: If bound states are present the potential is unique-
ly determined by its reflection coefficient R(k), its bound
state energies — 82, v = 1,...,n, and its normalization con-
stants M,,v=1,.,n.

V1. EXAMPLES
A simple example that illustrates some of the results
above is the linear potential
q(x) =xH(x),
where H(x) is the step function [ H(x) = 1, x>0, and zero
otherwise]. The scattering solution is easily calculated
e —R(k)e~ ™, x<0,
¢(x’k ) = [ ( ) 2
C(k)Ai(x—k*), x>0,
where Ai is the Airy function® and

Ai'( —k?) — ik Ai( —k2)
Ai'( — k3 +ik Ai(—k2)’
C(k) = 2ik /[Ai'( — k2?) + ik Ai( —kD)].

R (k) =

6.1)

It is easy to see that

f tAi(t — ke ™ dt= — Ai'( —k?) — ik Ai( —k?),

0

which is equivalent to Eq. (4.3) in Theorem 6. It is also
straightforward to evaluate the asymptotic behavior of the
reflection coefficient R(k) in Eq. (6.1). We get

R(k) =ei{(4/3)/k’+1r/2} {1 +0(k —3)}’ as k—»co.

Potentials of a general power of x can be analyzed by
asymptotic methods given by Brander.'*

An example of an exponential potential is ( 8> 0)

g(x) = (¥ — 1) H(x).
The solution to this problem is

e — R(k)e™*, x<0,
’k =

YEk) [cckm((z/me&”), %30,
wherev = (2i/B) (k* + 1)"/?, K is the modified Bessel func-
tion of second kind,'* and

_ K(2/B) — kK, (2/B)

Rk) = , (6.2)
K (2/B) + kK, (2/8)
C(k) =2k /[K,(2/B) + ikK,(2/B)].
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Now K, (a,) is real for real a, and a, (see Ref. 13). The
asymptotic behavior of R(%) in Eq. (6.2) is given by

= 2v r(l+‘V) 1 Ok-—l
R(k) =8 ————————r(l_v){ +O0(k 1}

=exp{vIn(1 —+?) + 2vIn( B/e) + in/2}
x{1+ 0k~ YH}, as k>w.
Similarly, for the pure exponential potential (a,8>0)
g(x) =aé™
We get (v = 2ik /8)

2 \»
R(k)=_r.;(L'l'_‘l(ﬁ_)_
Ir'l—v\a

A more complicated potential is the Morse potential
(aB>0)

g(x) = a*(&/f — 2P).
The scattering solution ¥(x,k) is
Y(x,k) = exp(afe”)
X {** \F\(ikB + § + aB:2ikB + 1; — 2afe™?)
— R(k)e™ * F\( — ikB + jaf; — 2k + 1;
— 2afe?)},

(6.3)

where
R(k) =e~*™( —2ap) ¥
L} —af —ikB)I'(1 + 2ikB)
T'(} —aB + ikB)T (1~ 2ikB) ’

and , F, is the Kummer’s function.”

(6.4)
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APPENDIX: HARDY SPACES H”

For the convenience of the reader we collect in this ap-
pendix some useful results on the Hardy space H ©. A gen-
eral introduction to H ? is given by Dym and McKean,'* p.
160. For general H #, 0 < p< o we refer to Ref. 16.

We introduce the notation D for the open upper half
plane, i.e,

D={z=x+iyly>0},

and define the translation of the argument of a function f
defined in D by

L (x)=f(x + iy).
The Hardy space H #, 0 <p < w, is defined as

H ? = {f(z)|f holomorphic in D and sugll Hllp <ok
>
’ (A1)
where

1t ={[ 1reopa)”.
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H = is defined as
H> ={ f(z)| f holomorphic in D

and | f| bounded in D}. (A2)
The Fourier transform is defined as
Fik) =r flx)e — " dx, (A3)
Fiy =1 f " foe dx. (Ad)
2 J-

For L 2 functions we have (in the L ? sense)

flx) =fx),
and the Plancherel theorem

I Fll = V27| £l

or more generally

f A =»edy=2r| flx)g(x)dx.

For a function fin H 2 we have the following important
theorem.'$

Theorem A. 1: A function fis in H * if and only if there
exists a function feL 2(0, «0 ) with supportin {0, «0 ) such that

A2) =f°°5‘(k>e"“dk, 2€D, (AS)
(43
and
supllf Il = (1421 7z (A6)

This theorem shows that we can identify H? with the
Fourier transform of functions in L ?(0, 0 ), more precisely

H?={feL*(— oo,oo)lf'(k) =0, for almost all k <0}
Similarly, we define A 2

H*={feL*( — o, )|f(k) =0, for almost all >0},

which has corresponding holomorphic properties in the low-

er complex half-plane. The isometry
Lz(—w,w)ﬁ_fﬂz$ﬁ2 (A7)

holds and the following orthogonal projections on L ? onto

H? and H? show that the decomposition of Eq. (A7) is or-
thogonal:

(P‘f)(x)=—1-J0 Uw f(t)e“"“dt}e"""dk
2r J_lUU_«

=(1(_ o) ), (A8)
(P (x) =—— wa f(t)e“'"’dt]e"""dk
217' {¢] -— oo
= (L) (). (A9)

We close this Appendix by giving the following impor-
tant theorems for functions in A ? (see Ref. 16).

Theorem A.2: If feH ?, 1<{p< x, then the boundary
function

S(x) = lim f{x + ip)
y—0

exists pointwise almost everywhere and f&L *.
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Theorem A.3: Let 0 < p,7< 0. If feH ? and if its bound-
ary function is in L’, then f'is also in H".
Theorem A.4: If feH ?, 1<p< =, then

R -

T)ow x—124y
Furthermore,
f(z)=_1._.J‘ S d, y>0,
2mi) - t—2

andf(z) = 0, for ally < 0. Conversely, if f(#)eL ?( — e, ),
1<p< w0, and

Y (" Sfl)de
*(z) ==~ _—
/@ i f_w (x—1)2+)y
is holomorphic in D or alternatively (p# « )

f*(z) =-i:fw ._fl.t)_dtzo’ y<o’
277'1 - 0 t_z

then f*cH * and its boundary function f(x) = f*(x) in the
sense of mean convergence (L ? norm).
Theorem A.5: If feH 7, 1<p < o then

tim| 512 = /1,
and

lim |If, — £ =0.

y—0

Furthermore, if 0 <y, < y,, then

W llo <UL llp <I1LA1lp-
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A non-self-adjoint Sturmian eigenvalue equation of the form Av = f, encountered in quantum
scattering theory, is solved as a complex general matrix eigenvalue problem. The matrix form is
obtained on expansion of the solution in a discrete set of spherical Sturmian—-Bessel functions of
complex argument. This set of basis functions gives better convergence behavior for both the
eigenvalues and eigenfunctions when compared to the results of a Chebyshev polynomial method

reported previously.

I. INTRODUCTION

The theory of potential scattering can be formulated by
expansion of the scattering waves in terms of a set of basis
states. For low incident energies, when compound nuclear
resonances dominate,! a convenient set of basis states are the
Gamow functions,? as was shown by Kapur and Peierls® in
1938. A great deal of effort has already been devoted to the
numerical evaluation of Gamow states, either in configura-
tion space* or in momentum space.>*

For high energies, where a smooth optical potential
gives an adequate description of the nucleon-nucleus inter-
action, it is usual to solve the Schrédinger equation numeri-
cally, and avoid unnecessary expansions. However, when
the optical potential is replaced by a set of coupled equations,
as is done in the case of a microscopic description of the
nucleon-nucleus interaction, and if the number N of chan-
nels becomes large (larger than ~40), then an expansion in
a set of Sturmian basis functions”® can become preferable.
The conventional numerical method of solving the equations
on a mesh of radial steps involves a large amount of comput-
er time, which increases as N 3, and at the same time becomes
unreliable, since it is not easy to numerically satisfy the out-
going wave boundary conditions in all N channels. On the
other hand, the computing time for an expansion in terms of
abasis of Sturmian states, increases as N 2, and the validity of
the boundary conditions is automatically assured.

One such basis is the set of Sturmian eigenfunctions for a
square well potential. They are proportional to the product
of the radial distance r times a spherical Bessel function of
complex argument K r, where the K| ’s are discrete complex
wave numbers. A general Sturmian function is defined in a
radial interval from O toa. At the upper limit the logarithmic
derivative of this function is required to be the same as that of
the outgoing Hankel (or Coulomb) function for the real
physical energy of the channel in question. At the origin this
Sturmian function is required to vanish, and between 0 and a
it obeys the Schrédinger equation for the given optical po-
tential, which, however, is multiplied by a complex scalar
(called the eigenvalue) such that the boundary condition is
satisfied. This differs from the Gamow states case, where the
potential is kept fixed and the energy is made complex in-
stead. For the Sturmian-Bessel case the potential is a square
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well of radius a, which is added to the centripetal potential
for angular momentum /. For this case the Sturmian—Bessel
functions and the Gamow functions are identical.

The Sturmian-Bessel basis, has already shown its use-
fulness in that it gives rise to expressions for the scattering 7-
matrix in complex momentum space, which can be solved
numerically without difficulty.” Furthermore, the required
integrals of products of two such functions times a potential,
over the finite radial interval [0,a] can be computed rapidly
and with great accuracy for the case that the potential is a
Gaussian function, by employing semianalytical expressions
for the error function.'® A fast algorithm for obtaining the
complex Bessel wave numbers K; is also available.!

A basis of Sturmian—Bessel functions is also useful for
calculating the Sturmian eigenfunctions for a general poten-
tial, be it for the case of a single channel or for a set of coupled
channels. These general Sturmian eigenfunctions in turn are
useful for providing succinct separable representations for
the multichannel Green’s functions that occur in a set of
coupled equations'? for the corresponding T-matrix opera-
tor, and for the nonlocality of the corresponding optical po-
tential. These general Sturmian states are also useful in as-
sessing the strength of the potentials through the size of the
eigenvalues, and for producing corrections to the distorted
wave Born approximation.'?

In view of the usefulness of Sturmian functions in scat-
tering theory it is of interest to assess the accuracy with
which such functions v can be calculated for a general poten-
tial /by expanding them into a set of basis functions.

The eigenvalue equation to be solved is

Av=abv, (1)

where A is a linear second-order differential operator that is
not necessarily self-adjoint because it can contain a complex,
diffuse, local interaction potential V,. For the choice of
boundary conditions discussed above and in Ref. 13, @ and v
are the corresponding complex eigenvalues and eigenfunc-
tions. In this case the v’s are not Gamow states because the
energy, contained in 4, is still real while the potential ¥ is
made complex (with a positive, or emissive, imaginary part)
through the multiplication by the scalar a.

In a previous paper'® we solved Eq. (1) for an uncou-
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pled general complex potential by expanding v in terms of a
set of Chebyshev polynomials, and we have examined the
feasibility and accuracy of this method for several examples
that are commonly used in nuclear physics applications. It is
the purpose of the present paper to make a similar type of
analysis with a basis set of Sturmian-Bessel functions, and
compare the accuracy achieved in this case with that for the
Chebysheyv basis.

An advantage of the Bessel function basis (BFB) over
the Chebyshev polynomial basis (CPB) is that the quantities
a and v converge more rapidly with the size of the basis. A
disadvantage of the BFB is that it may not have the stable
numerical properties characteristic of the CPB. Further-
more, the standard operations of differentiation and integra-
tion on expansions in the basis, while trivial in the Cheby-
shev case, often need to be evaluated numerically in the
Bessel function basis.

For certain pathological potentials it could happen that
the corresponding Sturmian functions do not form a com-
plete set, for example, when the integral of the square of such
a function from O to a vanishes. We have not encountered
this situation in our various applications. This possibility,
however, does not invalidate the general usefulness of these
functions, and the need to understand their convergence be-
havior.

This study is divided into six sections and an appendix.
Sections II and III describe the Sturmian-Bessel functions
and explain how they are obtained. Sections IV and V dis-
cuss application of the method to case five of Ref. 13 and
compare the results for the eigenvalues and eigenfunctions
with the Chebyshev polynomial basis of Ref. 13. Section VI
summarizes the conclusions, and the Appendix describes a
method of finding the complex wave numbers of the spheri-
cal Bessel functions.

Il. THE STURMIAN-BESSEL FUNCTION BASIS

The Sturmian-Bessel function basis set is related to the
regular solution of the equation

D) = U, @
where k2 = 2uE /#7,
T, (r) = Qu/tYV,, +iW,), r<a,
=0, r>a, (3)

with ¥,, and W#,, real constants determined by the boundary
condition on f, (r) at » = a (see below); E is the center-of-
mass energy in MeV of a particle mass u, k 2is a real constant,
and / refers to orbital angular momentum and has only in-
teger values. The interior (7<a) solution of Eq. (2) with the
potential (3) is

Sy =K, rj,(K,r), (4)

where j, is the spherical Bessel function of complex argu-
ment** with

KL =k>—T,, (5)

and the subscript n in Egs. (4) and (5) indicates that Eq. (2)
has solutions only for a discrete set of complex potentials U,

d2
a4 g2
[dr2 +
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for fixed /. This set is discrete because the boundary condi-
tionon f, (r) atr=ais

[/1 d f,,(r) _[ 1 dh§+’(kr)]
() dr L. RSP (kr)  dr ,

where
h{t) (kry=i+'krhV (kr), N

and 4 (¥ (kr) is a spherical Bessel function of the first kind'4
of real argument. If / = 0, then the right-hand side of (6) is
ik, while if I #0, but ka </, it is not too different from ik.

The boundary condition (6) is a complex transcenden-
tal equation for the roots K, , and has been solved'’ for / = 0
by Nussenzveig and Joffily with a complex square well po-
tential and by Kaus and Pearson for / = 0,1 with the real
case. A numerical method of obtaining the solution, using a
rapidly convergent Newton iteration technique is described
in the Appendix.

The solutions (4) form a discrete set corresponding to
the discrete set of complex numbers

K,,,d =A[n + i.BI" , N= 1,2,-.., (8)

which solve the boundary condition (6) for each /. For dif-
ferent values of the asymptotic wave number k (or energy
E), or different /, another set of numbers (8) is obtained. As
n increases by unity, the corresponding function f;, (r) ac-
quires an additional node inside » = @ and the real part of the
square well potential (3) becomes more negative. The corre-
sponding values of the imaginary part are all positive since
the square well has to be “emissive” in order that the f;, (7)
have an asymptotic boundary condition of only “outgoing
waves” (see Appendix A of Ref. 13). As n increases, the real
part of K, a in (8) increases by approximately 7. The corre-
sponding magnitude of B,, (which is always negative) ini-
tially increases slowly as a function of » and then decreases
(see the Appendix).
The Sturmian BFB, ¢,, (r), n = 1,2,..., is defined by

& (r) =N, K, rji (K, 1), (9a)
=N h{* (kr), (9b)

The basis is orthonormal with the normalization constants
N, chosen such that

(i,lln + inn )r ¢ln (r)¢ln’ (r)dr = 8nn’ ’
(o

which follows uniquely from the boundary condition of Eq.
(6).

The Sturmian BFB set defined by Egs. (9) and (10) is
used to expand solutions of Eq. (1) corresponding to diffuse
complex interactions as described in the next section.

b4
=a

(6)

r<a,

r>a.

(10)

IIl. SOLUTION OF EIGENVALUE EQUATIONS WITH THE
BASIS

The solutions of Eq. (1) are also denoted as positive
energy channel Weinberg states in Ref. 16. They are regular
at the origin, asymptotically “outgoing waves” (with real
wave number k) and obey the eigenvalue equation

(T; — E)oy(r) = — (@ + DV, (r) . (11)
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Here

# 1(1+1)] (12)

T, = 2# ) rz +
The potential ¥ is complex, and @ y»J = 1,2,..., is the discrete
eigenvalue. Equation (11) is a special case of Eq. (3) of Ref.
13 with U, set equal to U.

In the present study an approximation to vy is obtained
by expansion on the BFB ¢, (7) described in Sec. II,

N
P =3 (e’

n=1

(13)

The coefficients in the expansion of Eq. (13) are the eigen-
vectors of the matrix equation'®

S Vo el =

n=1

ey,

a®+ 1! n=1,.N,

(14)

obtained by inserting (13) into (11), multiplying both sides
by ¢, (1), integrating over 7 from O to @, and using the nor-
malization property (10) written in the form

[ntn @ -Brprrar= -5,
0

The matrix elements ¥, are given by

Yy = f b1 (VT (Vs (P)dr
0

The accuracy of the expansion as a function of the basis
size N is studied for eigenvalues a; in Sec. IV and eigenfunc-
tions vy in Sec. V. A comparison is made with the results of
Ref. 13 for the expansion of v (7) on a basis of Chebyshev
polynomials.

(15)

(16)

IV. CONVERGENCE FOR EIGENVALUES

Case five, as discussed in Ref. 13, corresponds to a neu-
tron at 15 MeV (Lab) scattering from °0 and therefore the
mass of the projectile and target are those of a neutron and
the nucleus '°0. The value of 2u/#* is 0.047 832X 16/17
fm~2 MeV ~! and y is the reduced mass. The center-of-mass

energy is 14.11 MeV, the wave number k£ is0.797 215 2 fn_l_“’
and the matching radius a, beyond which the potential V is
set to zero, has the value of 7.39 fm. The values of the angular
momentum quantum number / range from O to 10 in the
calculations reported here.

The functions ¢,, (7), defined in Eq. (9) were calculated
by solving Eq. (2) in single precision by means of the Nu-
merov method'® with a step size Ar = 7.2168 X 10~ fm.
The required depth 7, + i W,, of the square well potential
(3) is obtained by solving the transcendental equation (6)
by the iterative procedure, described in the Appendix. The
integrals required for the normalization condition (10) and
the matrix elements V,,,,, Eq. (16), were calculated by qua-
drature using Simpson’s rule. The diagonalization of the ma-
trix equation (14) was performed with the EISPACK routines
using IBM double precision arithmetic!’ and the resulting
values of & and v (r) were studied as a function of N.
Eigenvalues obtamed by the Bessel function method of the
present work for / = 0 to 10 and j< 10 were compared with
the previous results’® obtained for case five with the Cheby-
shev polynomial method. Differences were typically of the
order of one digit in the fourth significant figure and exceed-
ed this by several digits only in a few instances.

Figure 1 shows the rate of convergence of 2f/” to a pre-
scribed error of one digit in the S'th sngmﬁcant figure as a
function of N the number of BFB elements used in (13) for
I = 0. This figure, when compared to Fig. (2d) of Ref. 13,
shows a substantial improvement over the CPB. The BFB
requires approximately half the number of basis states used
by the CPB and the rate of convergence from S =1t0 S =4
is twice that of the CPB. Figure 1 shows a result which is
typical for the BFB, namely, a rapid convergence beyond
S =1, whereas convergence in the CPB is slower for case
five. Thus the difference in basis size (N4=%— N4=!) re-
quired to produce an accuracy of S = 4 for all eigenvalues
upto j = 8 is smaller for the BFB case ( ~16) than for the
CPB (~24).

Another measure of convergence for the eigenvalues is
given in Fig. 2. This figure shows all eigenvalues of magni-
tude <110 (for / = 0 to 10), which have converged to four

I MIBICO—N —AZ>O—TI—ZO=0

FIG. 1. Rate of convergence to one
digitin the S th decimal as a function
of matrix order for j=1 to 8 and
I=0. The numbers on the curves
give the j of the eigenvalue.
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significant figures as a function of the matrix order N re-
quired to achieve this limit. The squares correspond to the
results of Fig. 4 of Ref. 13 for the CPB and the circles are the
results of the BFB for the present calculation. This type of
plot is important in assessing how large a matrix is required
to ensure convergence of all complex eigenvalues lying in-
side a circle of prescribed radius. For both the CPB and the
BFB, the points are clustered along a line, an estimate of the
efficiency of either basis is given by the slope of such a line. A
comparison shows that in the BFB case such a line has a
slope ~4.6 compared to ~2.7 for the CPB. This comparison
confirms the result of Fig. 1, namely, that for eigenvalues of
similar magnitude the BFB requires approximately half the
number of basis states when compared to the CPB results.
However, the members of the BFB are complex while those
of the CPB are real. Thus a direct comparison of the two

TABLE 1. Comparison of maximum error on 0<7<7.39 fm.*

bases should take account of the fact that one complex func-
tion is equivalent to two real functions.

V. CONVERGENCE FOR EIGENFUNCTIONS

The expansion coefficients ¢{"” on the BFB are the ei-
genvectors corresponding to the eigenvalues aff" for the
N XN matrix eigenvalue equation (14). The eigenvectors
may be normalized by the same condition as used in Sec. III
of Ref. 13. In the comparison of different basis sizes N,
eITor curves

Ag [vf (n —v™ (], =123, (17

were produced, with A as a scale factor and (as in Sec. IV)
§ = 1,2,3, and 4 correspond, respectively, to convergence to
within one digit in the first to fourth significant figure for

Chebyshev polynomial basis®

Bessel function basis

I j Ng Real Imaginary Ng Real Imaginary®
0 1 12 0.46( —2) 0.41(~2) 6 0.16( - 1) 0.21(—1)
16 0.68( —3) 0.65( — 3) 8 0.42( —2) 0.26( —2)
18 0.31( —3) 0.29( — 3) 10 0.84( —3) 0.73( — 3)
22 e e 12 e ..
10 30 0.37 0.38 22 0.29 0.26
36 0.76( — 1) 0.76( — 1) 24 029(—-1) 0.32(—-1)
40 0.12(-1) 011(—1) 26 0.53(—2) 0.68( — 2)
48 .. e 28 eee ...
4 1 8 2.7 14 4 0.37 0.37
12 1.3 0.26 6 0.55(—1) 0.38(—1)
18 0.28(—1) 0.13 8 0.11(—-1) 0.91( —2)
26 .- e 10 .- ...
8 30 1.6 1.2 20 0.34 0.36
40 0.34 0.31 22 0.28( —1) 041(—1)
4 0.18 0.20 24 0.76( —2) 0.96( —2)
52 cen e 26 eee e
*The maximum error is the maximum value of |[p{™ — v{;'| for § = 1,2,3.

>From Ref. 13.
¢ The number in parenthesis is the exponent of 10.
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real and imaginary parts of the eigenvalue ;. Thus the area
under the modulus of the error curve is a measure of the
magnitude of the error remaining on truncation after Ng
terms. Error curves (17) were produced for /=0 (j=1
and 10),/=4 (j=1,and 8),and /=6 (j=1).

Table I shows a comparison of the maximum error pro-
duced on the interval of approximation [0,7.39] by the BFB
and the CPB for / = 0 and 4. For the case of / =0 andj = 1,
with approximately twice the number of basis states, the
CPB has a maximum error that is as much as five times
smaller than that of the BFB. In this example, the two meth-
ods give a comparable (maximum) error if the CPB has
approximately four terms more than the BFB. Thus, for
! =0, j = 1, the rapid convergence of the eigenvalue in the
BFB when compared to the CPB does not necessarily imply
a smaller error for the eigenfunction. However, for / =0,
j=10and! = 4,j = 1, similar maximum errors are obtained
only when the CPB has approximately 14 basis elements
more than the BFB. For / = 4, j = 8 the difference in basis
size is of the order of 22 and in the case of / = 6,j = 1 (not

shown) this becomes a difference of 30 terms more for the
CPB.

The error curves (17) for the real part of the eigenfunc-
tions are shown in Figs. 3 and 4 with parts (a) and (b)
corresponding, respectively, to BFB and CPB. For /=0,
Jj =1, itis seen in Fig. 3 that the CPB with N; = 18 provides
a much better approximation than does the BFB with
N; = 10 over the whole interval in that it differs from zero
less than the BFB does. However, in Fig. 4, the converse is
the case, with the BFB providing the better approximation.

For /56, neither the BFB nor the CPB performs well,
and large basis sizes are required to reduce errors in the ei-
genfunctions even though eigenvalues have converged. As
noted in Ref. 13, this is due to the eigenfunctions of case five
inside the potential having oscillations of amplitude orders
of magnitude greater than the eigenfunction outside.

VI. CONCLUSIONS

A novel method of solution for a non-seif-adjoint Stur-
mian eigenvalue equation has been proposed. The method
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consists of expansion of the eigensolution on a discrete basis
of suitably normalized spherical Bessel functions of complex
argument. The basis functions are members of a discrete set
of functions corresponding to distinct roots of a complex
transcendental equation obtained from an asymptotic
boundary condition. Substitution of the expansion into the
second-order differential equation of interest leads to a com-
plex matrix eigenvalue problem that is solved by convention-
al techniques. The complex eigenvalues of the matrix are
those of the required complex two-point boundary value
problem. The corresponding eigenvectors are the expansion
coefficients on the Bessel function basis.

The method has been compared in detail with one using
a Chebyshev polynomial basis reported in another study"?
for a realistic case. Comparison of the rate of convergence for
eigenvalues showed that the Bessel function basis method
was approximately 70% more efficient in terms of the num-
ber of basis states when compared with the Chebyshev po-
lynomial method. Convergence for eigenfunctions was in-
vestigated by comparison of error curves, on the interval of
approximation, for different truncations of the Bessel func-
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tion and Chebyshev polynomial bases. For small orbital an-
gular momentum / and eigenvalues of small magnitude, the
two types of bases produced similar errors for similar basis
size. However, for larger / and eigenvalues of larger magni-
tude the Bessel function basis proved superior in that a sub-
stantially smaller number of basis functions was required for
a prescribed error compared to the Chebyshev polynomial
basis.

In conclusion, this and the previous report'> have estab-
lished the stability of two independent methods of generat-
ing numerically, in realistic cases, the elements vy of a set of
basis functions used in the construction of finite rank ap-
proximations to non-self-adjoint integral operators. Investi-
gation of the applicability of the Sturmian expansion method
to scattering theory®'? is in progress.®
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APPENDIX: ROOTS OF THE SQUARE WELL
TRANSCENDENTAL EQUATION

In the case that the potential U in Eq. (2) is a square
well, the solutions are spherical Bessel functions as given by
Eq. (4). The argument of these functions is the complex
variable z = Kr. At the matching point = g, z is denoted as
Z=A+iB.

The boundary condition (6) on the solution, Eq . (4) ,at
r = a for the square well case reduces to the requirement

DI (Z, 20) = 0 (Al)
with

D\(Z,2)) =Z (i1 (2)/ji(Z)] — U+ 2p), (A2)
where

a dh{*) (kr)
ZO =
h ; +) (kr) dr r=a
=Xo+ iy - (A3)

The roots Z,, = A4,, +i B, of Eq. (A1) are found by
Newton’s iteration method!? in the complex plane, using as
starting values Z {’, which are arrived at by a method de-
scribed below. Figure 5 illustrates the resulting values of 4,
and B, for the kinematic conditions of case five, with
a = 7.39fmand k = 0.797 215 2 fm ™. For large values of n
and even /, 4,, is close to a half-integral multiple of 7, while
for odd /, 4, lies close to an integral multiple of 7. As n
decreases, a bend in the trajectory of points (4,,,B,, ) occurs
(close to A,, ~2). This behavior can be understood by ex-
amining the behavior of D, (Z, z,) For large values of Z the
asymptotic form of the Bessel functions can be utilized, and
we find!! two branches for the solutions, denoted as ( + )

AL =al7 +y5/(a7 + 10+ 1)/
(A6)

Bl = —yo/a},”’. (A7)
For the ( + ) branch these solutions are

AP =alT (1 =112, (A8)

B{t) = —al,* /y,. , (A9)
Here x, and y, are the real and imaginary parts of z,, defined
in Eq. (A3).

The behavior of the solutions described above arises
from the fact that asymptotically the Bessel functions in
(A2) contain sines or cosines (of complex argument). The
solutions are multivalued because the real part of the circu-
lar functions are oscillatory functions of the real part of the
variable. A detailed discussion of the properties of D, (Z, z,)
is given elsewhere.!

The numerical procedure consists in starting the itera-
tive solutions at large values of 7 on the ( — ) branch. The
starting values Z |}’ are taken from Eqs. (A6) and (A7).
The result is illustrated in Fig. 5 by the points lying to the
right of the minimum, i.e., 4;, > 37. The value of » is de-
creased successively by one unit, the previously found values
of Z,, serving to construct the guess for the next value of .

This procedure is continued until we arrive near the
bend of the curve, where the ( 4 ) branch of the solution is
reached. Even though Z,, is not so large that the asymptotic
expressions for the Bessel functions are valid, it is neverthe-
less found that Egs. (A8) and (A9) provide adequate
guesses for the starting values of the iterative procedure.

The procedure developed usually requires three or four
iterations in order to achieve an accuracy of 1 part in 10 for
each n. For the parameter values used, i.e., 0</<10 and
10<ka< 60, no roots were found to be missing. The valleys of -
convergence around each root appear to be sufficiently
broad to make the method reliable. The results have been

and ( — ). They lie close to the points af,*’ and af,~’ given  checked for / =0 and / = 1 by comparison with a graphic
by method.!!
@)= Q2n+1—1)(7/2), (A4) Ano_ther checfk lies in the_ comparison wit_h the Ch::by-
(+) 41 shev basis expansion for the eigenvalues and eigenfunctions
iy =(2n+D(7/2). (AS)  of Eq. (1) for the square well case of Ref. 13.
For the ( — ) branch the asymptotic solutions are The CPU time required on an IBM 360 model 168 com-
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B i Z\A X Py 4 FIG. 5. Argand plot of the complex roots
1m | < A, + iB,, of Eq. (A1) for I values 0 to 3 as
- 1 .\°\3 indicated in the symbol key. The integers on
“hor o ! 2 the points are the values of n and the value of
[ v 2<,> A %, ka for this case was 5.891 420,
-1.5 ; o - 1 =Q
I X- L=
o-L=2
L a-0=3
-2.0 }—
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puter with double precision arithmetic is typically less than
three seconds in order to obtain 1200 different complex roots
of the transcendental equation.
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It is pointed out that, even if restricted to only self-dual (or anti-self-dual) fields, photon and
linearized graviton states of both helicities can be constructed by dropping the restriction to
positive-frequency fields. Consequently, contrary to the usual belief, it may not be necessary to
work with both self-dual and anti-self-dual fields to obtain the Hilbert space of all quantum states

in full quantum gravity.

I. INTRODUCTION

For free spin-1 and spin-2 fields, the helicity operator is
generally defined in textbooks' in the momentum represen-
tation. This representation is not available for self-interact-
ing fields of Yang-Mills theory and general relativity.
Therefore, recently, Birula et al.? translated the usual defini-
tion in terms of space-time fields themselves, without any
reference to Fourier transforms, and obtained the relation

S= —ils|D ()
between the helicity operator § and the duality operator D,
where s is the spin of the field. This relation immediately
implies that self-dual fields (eigenvectors of D with eigenval-
ue + i) have positive helicity while the anti-self-dual fields
(eigenvectors of D with eigenvalue — 7) have negative heli-
city, in agreement with usage implicit in literature. Birula et
al. then used Eq. (1) to define the helicity operator for non-
linear Yang-Mills and Einstein fields.

The purpose of this note is to point out an oversight:
Already for linear fields, Eq. (1) holds only if one restricts
oneself to positive frequencies. We shall see that, for nega-
tive-frequency fields, the correct helicity operator requires
an extra minus sign on the right side of Eq. (1), so that
negative-frequency, self-dual fields have negative helicity.
For a field that has both positive- and negative-frequency
parts, therefore, there is no simple relation between duality
and helicity. Thus, although as pointed out in Ref. 2, Eq. (1)
itself makes no reference to decomposition into momentum
states, its domain of validity cannot be specified without re-
course to the positive- and negative-frequency decomposi-
tion. Since the operation of taking positive-frequency parts
of fields is nonlocal, contrary to appearances, the helicity
operator is also nonlocal. Consequently, a priori it is not
clear how to extend the definition of this operator to Yang-
Mills and Einstein fields except in the asymptotic and weak
field limits.

Section II discusses the main result. While the correc-
tion of the oversight in Ref. 2 serves only to clarify a techni-
cal issue, the final picture that emerges from this correction
does have significant conceptual implications to certain pro-

* Dedicated to the memory of Dr. N. R. Gordon.
b Alfred P. Sloan Research Fellow.
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grams that are being pursued in the general context of quan-
tum gravity. These are briefly discussed in Sec. III.

Il. HELICITY AND DUALITY

Let us begin with Maxwell fields in Minkowski space-
time. Since we do not wish to tie ourselves to positive- or
negative-frequency fields from the beginning, it is conven-
ient to introduce the one-photon Hilbert space using real
solutions of Maxwell’s equations, Since details of this con-
struction have appeared in the literature,> we will only recall
the main steps without entering into issues of rigor involving
functional analysis.

Denote by ¥V the vector space of real solutions F,, to
Mazxwell’s equation in Minkowski space, which induce, on
any Cauchy surface, C* initial data of compact support.
The vector space ¥ is equipped with a natural symplectic
structure Q; Q: ¥V X V-R:

n(F,F):=fz(Fa,,Ab-F,,,,2 byds®, 2)

where A4, is any smooth vector potential of F,,. This sym-
plectic structure governs the classical Poisson brackets as
well as quantum commutators between Maxwell fields. To
construct the Hilbert space of one-photon states, one needs
to make V into a complex vector space. This is achieved by
introducing® a linear operator J:

J.-F=iF*+(—-OF", 3)
where F § are the positive- and negative-frequency parts of
F,,. Note that, since F,, is a real tensor field, sois J - F,,.

However, since J2 = — 1, J can be thought of as the oper-
ation of multiplication by i. Thus, one can simply define

(@a+ib) -F:=aF+bJ-F, 4)

for all real numbers a and b; Eq. (4) endows the space V of
real Maxwell fields with the structure of a complex vector
space. Next, it is easy to verify that the complex structure J
so introduced is compatible with the symplectic structure 2:

(FF): = (1/48) [QFJIF) + iQF,F)] (5

is the Hermitian inner product on the complex vector space
V. Denote the Cauchy completion of (V,{, }) by H. This H
is the Hilbert space of one-photon quantum states. Thus, to
obtain the one-photon Hilbert space, one has to introduce a
complex structure J such that (¥, J, ) is a Kahler space.
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TheJ defined above is the unique such complex structure for
which the natural action of the Poincaré group on the result-
ing H is unitary.

Let us now examine the relation between the Hilbert
space H constructed above and the more familiar Hilbert
space H * of positive frequency solutions F ;| to Maxwell’s
equation. Consider the mapping A*: H—~H * defined by
At .F=F*, The definition of J gives

A* . J.F=iF* =iA*.F. (6)
Thus, the operation of J on a real solution just corresponds to

multiplying its positive frequency part by /. Furthermore, it
is easy to show that

(F.FY=(i/28)Q(F — ,F+)

1 1 (- - d’K

=—. — | 4*K,|K|)A4 %K, ==

(2m)*"? ﬁf 2K IKDA (K'K')zixl
={(A*.FA*.F),. (D

Here, Za (K,K,) is the Fourier transform of any potential 4,
(of F,, ) satisfying the Lorentz gauge condition d,4° =0,

1 N ,
A, (X) =——| [4, (K,|K|)e® >~ Kl
0 = 57z 1A KK
4K
2K/’
and (, ), is the usual, textbook’ inner product on the H *.
Thus, (H,J, (,))is, via A*, naturally isomorphic to (H *, i,
G

Next, let us consider the mapping A ~ that sends any F,,
to its negative frequency part F ;. Now, we have

ATJ - F=(—-DF =(—i)A"-F. 9)

It is easy to verify that (F, F) = (A~ . F, A~ - F), so that
(H,J,{,)) is naturally isomorphic to (H —, (— 1), {,)_).
The extra minus sign in Eq. (9) relative to Eq. (6) will turn
out to be crucial.

We are now ready to examine the unitary representation
of the Poincaré group on H. Given by Killing vector field & ¢
on Minkowski space, we have a densely defined self-adjoint
operator § and H:

§.F.= —#iJ.LF, (10)

where L, F=L_F,, is the Lie derivative of F,, with respect
to (w.r.t.) &£ “. [ Note that Eq. (10) is a direct generalization
of the expression P, = — #i d /dx of the momentum opera-
tor, which generates space translations in the x direction in
nonrelativistic quantum mechanics. The presence of the
complex structure J in the right side of (10) ensures that £ is
a self-adjoint—rather than anti-self-adjoint—operator on
H.] The four-momentum operator P,, is given, in terms of
its component P, ¢ ¢, along any vector ¢ * by
Pte=t, (11)

wheretisthe self-adjoint operator on H corresponding to the
translational Killing vector defined by ¢#“. [The choice of
sign in the definition (10) of £ is dictated by the requirement
that P, be future—rather than past—pointing. Note that, in

our convention, 7,, has signature — + + + .] The angu-
lar momentum operator M,, is defined (w.r.t. an origin O in

+‘2a(K9'— IKI)eiK-x+ilK|t] (8)
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Minkowski space) in terms of its contraction f°® M, with
any skew tensor f°° by

f*M,:=E,, (12)

where £ % is the Lorentz Killing field §% =2 f "”_X by Xp
being the position vector (w.r.t. the origin 0) of the point at
which £ ¢ is evaluated. Finally, the Pauli-Lubanski spin vec-
tor operator .S ° is given by

S =P, M,,, (13)

where €?>*? is the alternating tensor field defined by the Min-
kowskian metric 7, . For classical zero rest mass particles,
the spin vector is parallel to the four-momentum and the
proportionality factor gives the helicity. We wish to find the
corresponding helicity operator .S on the Hilbert space H.

To find S, we proceed as follows. Fix a constant vector
field ¥* on Minkowski space. Then the component V,S ¢ of
the spin operator S ¢ on H is given by

(V,S%) - F,,
=4V, P,-M,, -F,,
= eV, P, . (—#J)
- [X,V.F,, + F,V,X;+F,V,X,]

- 6szcha( _ ﬁ,)2
* Vb [Xchan +ch77mi +Fcn17md]
= Y, (—A)?

AV F e )Nng + (Vo Fo )Na ]
= — JeW, (— #))?

NV uFo ) 0a + (Vo Fo )04 ]
=V — AN [VhF, + ViF,,]

=V —#)*. (V2F,,)

=V“Pa(—ﬁ")°‘an! (14)

where V is the derivative operator compatible with 7,,.
(Here, we have used the source-free Maxwell equations;
ViaFo; = 0is used in the fifth step and V{, F,.; = O in the
seventh.) Thus, on the Hilbert space H of one-photon states,
we are led to the defined 5"

S.F= —#J.D.F, (15)

where D is the duality operator, D - F,, = *F,, . Note that,
although neither J nor D admits real Maxwell fields F,, as
eigenvectors, S does! If F,, issuch that F | is self-dual (i.e.,
*F* =iF™),or,equivalently, F 5 isanti-self-dual, F,, isan
eigenvector of § with eigenvalue + #, while if F;} is anti-
self-dual, F, is an eigenvector of S with eigenvalue — #. (It
is interesting to note that .S is, modulo #, just the product of
two complex structures J and D.)

One can repeat the above analysis for linearized gravity.
The helicity operator on the Hilbert space of (linearized)
gravitons turns out to be

§$= —2#J.D, (16)
and, in general, we have
S= —|s|#. D, (17)

where s is the spin of the field.
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TABLE 1. Relation between duality, freque_ncy, and helicity.

Duality/Frequency Positive-freq. fields Negative-freq. fields
Self-dual fields + ve helicity — ve helicity
Anti-self-dual fields — ve helicity + ve helicity

The above framework based on real solutions is well
suited to compare and contrast results emerging from the use
of positive and negative frequencies. Using the isomorphism
A* between H and H * we can transport various operators
on H, associated with the Poincaré action, to H *. Equations
(6) and (10) imply that the Poincaré generator § on H *,
associated with a Killing field £°, is given by

E.-Ft:=A*.E.(A*)"\.F* = (#WiDLF+, (18)
whence it follows that the helicity operator on H * is
S.F*=|s|#/i)D . F+. (19)

Hence if a positive-frequency field F * is self-dual, it is an
eigenvector of S with positive eigenvalue, [s|#i. On the nega-
tive-frequency Hilbert space H ~, on the other hand, we have

g.p—:=,\—.g.(A—)‘l.F-=iﬁL§F‘, (20)
and, consequently, the helicity operator is given by
S.F-=|s|ihD . F~. (21)

Thus, negative-frequency, self-dual fields are eigenvectors of
the helicity operator with the negative eigenvalue — |s|#i.

Our results can be summarized in Table I.

Remarks: (i) In our presentation, we purposely avoided
tying ourselves to positive- or negative-frequency fields from
the beginning. Instead, we began with real Maxwell fields,
constructed the one-particle Hilbert space, introduced the
correct Poincaré generators, and then translated our results
to the positive- and negative-frequency Hilbert spaces H* .
However, one could have also just begun with H * and H ~.
How would one then know that, given a Killing field £* on
Minkowski space, the corresponding self-adjoint generator &
on H* [Egs. (18) and (20)] should differ by a relative
sign? The answers lies in the fact that,on H * aswellas H ~,
the choice of sign is forced upon us by the requirement that
the four-momentum operator P, should be future pointing
(i.e., that ¢ ¢ P, should be a negative definite operator for all
future pointing time translations ¢ ¢; recall that 7, has sig-
nature — + + +).

(ii) If one works with spaces of solutions to nonlinear
equations such as Yang-Mills or Einstein, one cannot repeat
the above analysis because the space of solutions to these
equations does not have a natural vector-space structure.
However, one can then work with asymptotic states. This
can be done, without linearizing the equations, by using the
structure at future or past null infinity 7+ of space-time.’> On
It , one can isolate the radiative modes of the exact, nonlin-
ear theories. The space of radiative modes has a natural af-
fine space structure. One can use this, together with the ac-
tion of the symmetry groupat I+ to obtaina Hilbert space of
one-particle states. These are asymptotic states of the exact
theories. One can then introduce the four-momentum and
helicity operators. Although in technical details this con-
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struction differs from the one given in this paper, the final
results are the same. The asymptotic Yang-Mills particles
and gravitons have zero mass, and spin-1 and -2, respective-
ly. The relation between positive and negative frequencies,

- duality, and helicity is the same as in Table I.°

11l. DISCUSSION

The belief that self-dual fields always correspond to
positive helicity and anti-self-dual ones to negative helicity
was implicit in literature on self-dual and anti-self-dual solu-
tions to (Lorentzian) Yang-Mills and Einstein equations
for several years before the publication of Ref. 2, and has had
significant impact on the general way of thinking on many
problems. In particular, it had led one to believe that it is
essential to have both self-dual and anti-self-dual fields to
incorporate gravitons of both helicities in quantum gravity.
This scenario has been a major motivation behind attempts
to understand the “interaction” between the H-spaces and
the dual H-spaces as well as efforts aimed at “‘combining”
self-dual and anti-self-dual solutions to Einstein’s equation
using twistor methods.” As we have seen, the correct picture
in linear theories is that one can incorporate states of both
helicities in either of two ways: one can work with positive
frequency fields, both self-dual and anti-self-dual ones; or,
one can work just with self-dual fields without any restric-
tion on frequency. Consequently, in quantum gravity, a
priori, there are two possible types of avenues. The first
would involve the introduction of a generalization of the
notion of positive-frequency fields and a study of the interac-
tion between positive-frequency—rather than arbitrary—
self-dual and anti-self-dual configurations. The second pos-
sibility is to work with all self-dual configurations (or, “self-
dual parts” of real configurations®) without worrying about
frequencies. This attractive strategy would not have been
viable if one were forced to use both self-dual and anti-self-
dual fields to incorporate both helicities.
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Let 4 be a relativistic local field. If its two-point function in momentum space W,( p) has a falloff
such that for some a >0, W,( p)e*'7 is still a tempered distribution, then 4 is necessarily a

generalized free field.

I. INTRODUCTION

Let A be a relativistic local field in n space-time dimen-
sions. We assume that 4 fulfills all Wightman axioms.’

It is well known, since the early days of axiomatic quan-
tum field theory, that if the two-point function of a scalar
field 4 in momentum space W,(p) has the form
W,(p) = 6( p°)8( p* — m?), then 4 is a free field of mass m
(Jost-Schroer theorem?). Of course this is true for integer
spins, too. Some years later Greenberg® and Borchers (un-
published) proved independently that if W,(p)=0 for
P*>M?>0, then A is a generalized free field. In 1966 Vasi-
lev* got the same result if 4( p) decreased like e ~#!7"!, 11 > 0.
In this paper we extend these results further: If there exists
ana > Osuch that #W,( p)e*'7cS ", thend hastobeageneral-
ized free field. We want to emphasize that for this result we
do not have to assume that A transforms finite covariantly
under Lorentz transformations. So this result remains true
even if 4 has infinitely many components.

The paper is organized as follows: In Sec. IT we give the
precise formulation and the proof of our result. This will bel

m,q):(w.[i(”zq)z(”’;q)f(%q‘)z(

;‘+(P’Q)

applied in Sec. III to solutions of the wave equation. We
show how restrictions to timelike planes of such solutions
cannot look alike. Therefore this part may be of independent
interest.

Il. MAIN THEOREM

Theorem 1: Let 4(x) be a relativistic quantum field in n
space-time dimensions, obeying all Wightman axioms. If
there exists an a > 0 such that we have the bound

W, (p)EYFeS (RY)
for the Fourier transformed two-point function, then (i)
A(x) is a generalized free field, if n>3, and (ii) for n =2,
A(x) is a generalized free field, if there are no zero mass
states in the energy-momentum spectrum.

Proof:

(1) By the very assumption 4 ( p)Qe**'F defines a vec-
tor-valued tempered distribution.

(2) In the following we shall consider the matrix ele-
ment

=)l

F_(p,q),

where the minus, resp. plus, sign has to be chosen for bosons, resp. fermions, and # is any vector with compact momentum in

the domain of 4 * (f). By the spectrum condition we get
(i) pe¥ *rsupp{E( p)¢},
(i) supp Fo (p, - )C —p+ 7,
(iii) supp F_(p,- )Cp—V *.

We have to show F( p,q)=0 for pe¥ *\ {0} and all ¢.
(3) Using the Cauchy-Schwartz inequality we see that
(iv) F, ( p,g)e=@+o”

and _
(v) F_( p,g)e*=s=9

exist as tempered distributions. This implies immediately the existence of

F(p .q)cosh o/g?, oeR, |o|<2a

as a tempered distribution. For example, for g€ — p + ¥ * we have

% = cosh
F_(pg)coshoyg® = F, (p,gq) cosh2ay(p+q) N
1\ J cosh2ay(p + ¢)?
~ - -/
existsas a C * and all derivatives
distribution are bounded by polynomials
on supp F,

* This work contains parts of the author’s “Habilitationsschrift,” accepted

by the Physics Department, University of Gottingen.
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(4) For our convenience we define

G,(0,9): = F( p.g) cosh o\/g*
and

n/2 e
G,(ox):= (31;) fe“"‘Gp (0,9)d"g.

Lemma 1: (i) G, (0,x) is, for |o| <2, a weak solution of

the ultrahyperbolic equation

(3% +93% —9% —=—39, _)G,(ox) =

(i) G,(ox) =0, if x*<0, |o|<2a.

Proof: (a) 32G,(0,9) = ¢°G, (0,q), which is equiva-
lent to (i).
(b) G,(0x)

(L) e
(Ha(25) 3(257)] e
(L)

X (4@ +x), Ay —x)] Q)d"y
= 0, ifx2 <0
by the locality of [4(x), A(¥)] 1;
(8,G,)(0,9) = F( p.g)Ng* sinh ov/g*
and therefore

(3,G,) (0,x)=0.

(c) By repeated use of the mean value theorem of As-
geirson® for ultrahyperbolic equations, we get for |o| < 2a,

G,(ox) =0, if o*+x} —x*<0.

(d) For fixed values of o we have G,(o,x) =0, if
x*< — o But G,(ox) =G, (0,x) F G, (0x), where
G, (ox),resp. G, (0,x), are boundary values of functions
analytic in R” 4 /¥ *, resp. R* — iV*. By the double cone
theorem we get G, (o,x) =0, if x* <O0.

(5) For smooth functions feZ ([ — a,a]) we define
1

(i) suppFY (p, ) C{—p+V " IN{—-4p+V*}

which is obviously possible. Now we have

Gl (ox): = ff(T)Gp (0 — r.x)dr.

The following properties are obvious for |o| < a:
() (@2 +9% —A,)GL(ox) =
(il) G';(U,X) =Os if x2<0)

(iii) G{(o.q) = ff(f)a,, (o —7.q)dr

=F(p.g){f. (N =¢) cosh ov/g*
+ (V= ¢%)sinh 0@}

By this convolution we have achieved that 5{ (0,9) de-
creases quite fast in all directions of ¢ space!
(6) Lemma 2: G/ (o,x) =0, for |o] <a and all x.
Outline of the proof: We shall show first that G/ (o,x) is
a C = function. Together with the locality (ii), this implies

(3%3% G71)(0,0,x)=0, for all k, /and all x. -
Then we use a theorem by Strichartz® on solutions of the
ultrahyperbolic equation (i), which states that the vanishing
of all these derivatives rules out all nontrivial solutions.
Proof: (a) Let us treat first the case where p varies only
over V', e.g., by using testing functions h( p) with
supp hC V' * and defining G4 (0,x) = Sh( p)G/ (a.x)d "p.
(b) We claim that G (o,x) is a C * function:

Gl (ox) = ff'( p){fs (V= ¢%) cosho/q*
+f (=) sinh oyg’}e™ d "q,

and F(pg)=F, (pg) FF_(pg). We decompose

F + ( p,q) further into

F.(pg)=F', (pg) +F" (pg),
with

(i) suppF', (p,-)C —%p+7+,

and

Fs(N=¢%) cosh V@ + f, (V — ¢°) sinh ov/g* oo d

fF (p:9) cosh2aJ(p+q )?

. cosh 2ay/( p+q )? D)

dlstnbutlon

restricted to supp op F! L (p+)

this is a testing function

and

g’s (V=¢%) cosh oygZ + f, (= ¢°) sinh oy/g* }e'* d"q.,

F" 1 (pg)

-
restricted to supp F'L (p,-), this is a testing
function because of the rapid decrease of

f for real arguments

Therefore after integrating with A( p) both integrals define C = functions. For F_( P,q) we use an analogous decomposition.
In this way we have shown that G/, (0,x) is a C * function in o and x.
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(c) Now we make use of the following theorem given by
Strichartz.®
Theorem: Let u(y)eZ'(R?) be a weak solution of

(92 —32 —32)u(y) = Mu(y), MeR.

If (3} 3}, u) (¥5,0,0)=0, for all £,/, then u(y)=0.
If the space-time dimension is 2 (# = 2), we have

(92 +37% — 826 (6 =0

and because G/ (0,x) isa C © function that vanishes if x*><0,
we have (353 G%) (0,0,x,)=O0, for all k,/. By identifying
Yo = X1, ¥1 = Xg, ¥ = 0, and putting M = 0 we get from a
local version of the above theorem G4 (o,x)=0. If the space-
time dimension is greater than 2 (n>3), we do a Fourier
transformation with respect to x,,...,.x, _;:

HY (0%0:%1|@200-1G - 1)
1= JGﬁ(ax) exp —i(Xagr + -+ X, _14,_1)

dez"‘dxn -1

and HY is analytic with respect to ¢,,...,4, _; because the
support of G%(o,) is contained in ¥ *uF . But
HY (0%0:%1|@2s0-98n — 1) = 0,ifx2 —x} <OandisstillaC *
function. Therefore we can apply the above theorem with
M = 3"-14> and we get H}=0.

(d) Up to now we have shown that under the assump-
tions of Theorem 1, F( p,g) vanishes for pc¥ *. Therefore
the support of F( -,q) is contained in {p? = 0,p,> 0}.

Let us treat the case n3>3 first: Assume supp 4 is con-
tained in a small neighborhood of p = py(1,1,0,...,0). Then
G (0,¢) will not decrease for large ¢’s if g, is approximately
equal to ¢, because (cosh 2ay/(p + ¢)%) ™! does not decrease
if p and ¢ are parallel and lightlike. To circumvent this diffi-
culty we take geZ (R) and consider instead of G, (0,9), the
product G (0,)&(q,), which will decrease for large ¢,. In
all other directions we argue as earlier. Its Fourier transform

J‘Gi (T XX 1 — Y XseeesXy —1)8(¥)dy

is therefore a C * function, fulfills the ultrahyperbolic equa-
tion, and vanishes if x3 — x2 — ... — x2_, <0. By contin-
uity we get

f (03, G4) (0,05, — Xyt 1 JE()dY=0,

for all values of x,,x,,....x, _ . Then we proceed as in part
(c). The above trick is obviously only possible if n > 2.

(e) What happens in two-dimensional space-time? The
following example shows that certain peculiarities show up
in two-dimensional models.

Take a free vector field j #(x) with canonical dimension
1 obeying the conservation laws d,j*=0=d,€, j"
Therefore

P=i+ @& +i-(p, j'=j(&)—j-_(m,
where £ and 7 denote the light cone coordinates. The com-
. mutation relations are

(/D (£)jc (€N = -8 —§),

830 J. Math. Phys., Vol. 27, No. 3, March 1986

( l/t) [i—- (77)’]— (77,) ] = - 5’(7’, - 17)9
Ue(©)ji_(mpl=0.
Now take the Wick products ©, (&) =1/ :(£) and
©_(n) =12 :(n). These local fields still obey the massless
Klein-Gordon equation 0O, =0=[06O_ because
0 = 43,4, but both are genuine Lie fields and we have

(1/D[0,.(£),0,(£)]
= (1/%4m)5" (' — &) |
=8 —8)1[0.(8) +0.(£"]
and a similar relation for ©_ (7).

Therefore, we have to exclude zero mass states in two
space-time dimensions in the sense that

F(252)3(252)] =0

(st a(ese) o
(o fi(st) ez a)n

lil. REMARK ON THE WAVE EQUATION

There is a remarkable connection between local distri-
butions in n dimensions and weak solutions of the wave
equation in # + 1 dimensions given by Garding (see Ref. 5).

Let F, and F, be local distributions, i.e., F;(§) =0 if
£2<0, then

a(q’qn ): = J{FI (§) cos(qn\/?)
sin(g,vE?) ]
VE?

+ F,(&) et de

is a solution of the (» + 1)-dimensional wave equation
a 2 n a 2 a
—— — ( 'dn ) = 0’
(5~ &2 Joes
with

3G

G(4,0) =F,(g) and (@0 =F,(g).

(This looks like an “initial value problem” on the timelike
plane g, = 0!) The converse is true, too. The restriction of a
tempered solution of the wave equation to a timelike plane is
the Fourier transform of a local distribution.

Therefore, by similar methods as used in the above
proof, we get the following theorem.

Theorem 2: Let GeS'(R"*!) fulfill the wave equation

a 2 n a 2 G( ) 0

( o i; o ) 94,
Ifthe restrictions F, (¢) and F,(¢) of G and of 3G /3q,, to the
plane ¢, = O fulfill the conditions (i) there is a pe¥ * such
thatF, =F, —F,_,i=1.2,withsuppF,, C —p+V*
and suppF,_ Cp— V' *; and (ii) there is an >0 and a
B> 0such that

F’i+ (q)e"“’ +Bp)’e_g'(Rn),

Klaus Baumann 830



Fo_ (¢)e®@—PeS ' (R™);
then G = 0.
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A condition is found so that the Wick-ordered power series of scalar fields in four-dimensional
space-time is defined as a Fourier-hyperfunction field, and the derivative coupling model is
investigated in the framework of hyperfunction quantum field theory.

1. INTRODUCTION

Since Wightman and Garding' formulated the quantum
field theory in an axiomatic way by regarding fields as opera-
tor-valued tempered distributions, many authors have at-
tempted to generalize the theory to take in more fields repre-
sented by more singular generalized functions by restricting
the class of test functions. Among others, we only mention
the strictly localizable field theory of Jaffe,? and the hyper-
function quantum field theory of the present authors.®> For
the choice of test functions in quantum field theory, the read-
er should refer to a short review of Wightman.* One of our
motivations to generalize the theory in this way is the wish to
manage so-called nonrenormalizable fields in some appro-
priate framework, since it has been said that the exclusion of
nonrenormalizable fields from the theory is due to the axiom
of temperedness. For example, the model of neutral scalar
field with derivative coupling in four-dimensional space-
time is concerned with the interaction of the second kind®
and usually classified as nonrenormalizable by a simple pow-
er-counting argument. In the present paper we revisit this
model in the new light of the hyperfunction quantum field
theory and it will be shown that its Wightman functions are
inevitably not tempered distributions. This problem was
once treated quite formally by Okubo.®

The paper is organized as follows. In Sec. I we examine
the singularity of the two-point Wightman function of neu-
tral scalar field. The main result of Sec. II is that entire func-
tions of the two-point function are well defined as Fourier
hyperfunctions. In Sec. III, Wick-ordered entire functions of
the free field operator are studied. A condition is found so
that the Wick-ordered formal power series of the free field
has well-defined Wightman functions in the sense of the
Fourier hyperfunction (Theorems 3.3 and 3.4), and it is
shown that, thanks to the equivalence between Euclidean
field theory and Minkowski (hyperfunction) quantum field
theory (see Nagamachi and Mugibayashi’), these Wight-
man functions satisfy the axioms of Ref. 3. In Sec. IV, the
derivative coupling model is investigated. To accomplish the
infinite renormalization rigorously, we use the Euclidean
lattice formulation with an infinitesimal lattice spacing and
represent it in the language of nonstandard analysis. It is
proved that this model is renormalizable by the infinite field
strength renormalization and its Wightman functions satisfy
the axioms of Ref. 3, but they are never tempered distribu-
tions.
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Il. SINGULARITY OF THE TWO-POINT WIGHTMAN
FUNCTION OF THE FREE NEUTRAL SCALAR FIELD IN
FOUR-DIMENSIONAL SPACE-TIME

It is well known that the two-point Wightman function
of the free neutral scalar field in four-dimensional space-
time,

D{(x) = (2m) > fe‘"‘"‘&(kz — m?)0(k,)dk

= (27) ‘3I[M(k) 17 le— et0xgikx gk

[kx = koxo —kx, k2= (k,)*—k?,

(k) = (k> + m*)'?], 2.1

is a boundary value of the analytic continuation of the two-
point Schwinger function of the free field,

S,..(,V) = (21’.)-4 J‘[pZ + m2]—lelp‘ydp

= (27) "3 f[Zw( p)] e @(Pulghr 4y

[y =po¥o+ DY, P*=(pe)*+Pp°], (22)

which is analytic in y,70. That is, we have

lim S, (ix,+ €,x) = lim D {’(x, — i€,x)
e+ +0 €e—~+40
=D{(x).
It is also well known that the bilinear form C( fig) on
F(R*) X # (R?), defined by

C(fg) = fsm (x — »)f(x)g0)dx dy,

determines a unique Gaussian measure d® on .#*(R*) sa-
isfying
e=cunn - f &2 dd,, fe P (RY) . (23)
If m = 0, we can evaluate D § ~’(x) explicitly:
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D§ ) = 20m?1 [ e~ Mwe

= 1im [2(217)3]“j|k|“
e+ +0
xexp| — ilk|(x, — i€) lexp(ilk| |x| cos &)
X |k|*sin 8d |k| d6d¢
= lim [22m71~" [ 1ik(1
€~ +0 (1]
X expl — i|k|(xo — i€) ]
X [elIxl — g~ Ikl Ixl14 |Kk|

= lim (27) %[ (x, — ie)* — x*]'.
e—+0

Thus D § ~’(x) has singularity on the light cone with order
€72 at the origin of the space-time.

In the massive case D {,~’(x) is shown to have a similar
singularity as follows (see Glimm and Jaffe®). Let

ge) = [2(2#)3]_1J‘a)(k)"le——m(k)edk

- (zﬂ)—2f o(k)~le—*®ek| d [k|,
0

then we have
|D 7 (xo — iex)|<g(€) =D {7 >( —ig,0)

egle) = 2m) 2 J.w exp[ -~ s{l + (i'ﬂ)zl 1/2]
o s

xs/{1 + (em/s)*}' /2 ds,

(2.4)

and

where we have let |k| = s/¢€. Thus we have
ezg(e)—>(21r)‘2f e sds=(2m)"% as e>+0,
0

and D {7’ (x) has the singularity of order ¢~ at the origin.

The expression (2.1) of D {,~’(x) shows that the sup-
port of its Fourier transform is contained in the forward light
cone. Therefore D {,~(x) is the boundary value of the func-
tion D {,~(z), which is holomorphic in the backward light
cone (see Theorem 3.3.1 of Kawai®).

Here we give an estimate for S,, (y) of (2.2). Since
S, (y) is rotationally invariant, we may assume
¥ = (96,0,0,0). Then

IS )| =S, () = (217')_3f[2(o(p)]—‘e—wm\yol dp

=g(|ye]) -
For sufficiently small € > 0, we have
m+€|pl?, for |p|<1,
w(p)>[ |p| p|
m+¢lp|, for |p|>1.
Therefore

i o0
g(t)<conste”""[fe—“’2r2 dr-‘-f e—terrz dr]
1

(]

<Conste ™[t 32 4731,
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and we have for large y
|S,, ()| <const e~ ™P|y| =32, (2.5)

The n-fold product [D {7~ ’(x)]" of D{’(x) isalso a
boundary value of the holomorphic function [D {7~ ’(2)]%,
and defines a hyperfunction; moreover it is a distribution
since the order of growth is € ~ >" when it approaches the real
axis. But

$6,[D )]
n=0

is a distribution if and only if all except finite b, ’s are vanish-
ing (see Vogt'?). On the other hand, if

(2.6)

Y b,z 2.7
n=0
is an entire function, then (2.6) is a hyperfunction. More-
over it is a Fourier hyperfunction because D { ~ (x, — i€,x),
for € fixed, is a bounded function by (2.4). The power series
(2.7) determines an entire function if and only if its coeffi-
cients b, satisfy the condition

lim |b,|""=0.

Finally we look into the relation between the condition
(2.8) and the infraexponential condition for the Fourier
transformation of (2.6). We start with a series of proposi-
tions.

Proposition 2.1: The Fourier transformation of
[DS(x) ] is
[4(217.)3] —le(po)e (pz _ (2m)2)[p2 _ (zm)Z] 1/2/(p2) 1/2 .

2.9)

Proof: See (B.1) of Bogolubov, Logunov, and To-
dorov.'! See also the Appendix.

Proposition 2.2: The Fourier transformation F, (p) of
[D§(x)]" for n>2 s

F,(p)=2m)' '~ "(n—1)"'[(n—2)1]72
X (P*)*~20(py)0(p?) .
From (2.9) and (2.10) we have
[D§(x)] = Q2m)* "~ "(n— 1)~
X[(n—=2)1"2( =)D (x)?

(2.8)

(2.10)

for n>2.
Proposition 2.3: The Fourier transformation of
[D{’(x)]" is dominated by the function F, (p), (2.10).
The proof of the latter two propositions will be given in
the Appendix.
It is well known that the entire function
h(p)y= Y c,(p*)"~* (2.11)
n=2
is a Fourier hyperfunction if and only if it is infraexponen-
tial; this is equivalent to saying that £ _ , ¢, (p*)" is infraex-
ponential, i.e., £7_,¢,2" is an entire function of order } and
type 0. More explicitly, (2.11) is a Fourier hyperfunction if
and only if the coefficients satisfy the condition

lim [ (27)!]c,|]*" =0 (2.12)
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(see Theorem 2.2.10 of Boas'?).
The condition (2.12) coincides with the requirement
that the operator

icn( _D)n-Z

n=2
be a local operator (see the Appendix). In order that the
function

Y b, F,(p)
n=2
be a Fourier hyperfunction it is necessary and sufficient that
¢, =b,/[2m)* =4~ (n — D{(n - 2)1}*]
satisfy (2.12), that is,

(2.13)

mlbnllﬂn=0,

and this is equivalent to the condition (2.8). Since exp zis an
entire function, we have the following theorem.

Theorem 2.4: exp{D{,~’(x)} is a Fourier hyperfunc-
tion, but not a distribution.

IIl. WICK PRODUCTS AND ENTIRE FUNCTIONS OF THE
FREE NEUTRAL SCALAR FIELD

For the free field operator ¢(x), the Wick product is
defined by

[1/2]
: = 1)
B (x,)-(x;) rgo( )%[x,, %, ]

X PO, )b (x,_, ) - (3.1)

Here [/ /2] is the greatest integer less than or equal to / /2.
The sum 2 is over all partitions of the integers 1,...,/ into
two subsets {j,,.../»,} and {k...k;_,.} for which
J1<J2 < <Jars ky<ky<w<ki_s. The hafnian
[%y,5--+%;,, ] is defined by the vacuum expectation value

[xil""szr] =(Q’¢( ) ¢( er)‘Q)

=3 HD,‘,,"(x,-J—xk’),
pairin;

g s=1

where the summation is over all pairings (i,,k,),...,(i,,k, ) of
{j1ses jor } such that i, <k, for s = 1,...,r. Then :$(x)": is
defined (formally) as

:¢(x)': = lim :p(x;)-d(x):.
XyseeesX X

It is a well-defined field operator (see Wightman and Gard-
ing!).

Let be defined

pOx) = 3 a0BX) (3.2)

=0 n!

then Theorem A.1 of Jaffe'” reads as follows.

Theorem 3.1: As a formal power series we have

o R

(@ xy)p ™ (%,) Q) = 2= 63

ry=ol<i<j<n Rt

where
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rg=ry, ry=0,
R, =jzlr,j, t,=D(x,—x)),
Rl= ), TR= [ @7,
1<i<j<n 1<i<j<n
AR) = [[a9 - (3.4)
Comllar; ;IZ In the case of
PO = e = § g,
(3.3) becomes -

(Q’Pm(xl)“'P(") (x,)Q) = exp{ Z g,gjtt,} . (3.5)
1I<i<cj<n

For the random field ®( /) defined by (2.3), we also
define the Wick product by

(/21
D))= Z (-1’

r=0

x3 [ecs)-00s, )0
C'

XO(fie, )P (fr,_,) > (3.6)

where EC’ is the same as (3.1). Then we have

L2, — i RS _ - cianinges

n=0 n!

and
few(.ﬁ ..... 2. 4

= exp C(f“fi)]f [¢ ]d<l>c

= exp[ s C(f;,f;)]. (3.7)

Ii<j<n

If f; converges to the point measure g,6, in such a way that
x; #x; for i#j, the right-hand side of (3.7) converges to

E gigjsm (xi - xj)] ’

I<i<i<n
which is the Schwinger function corresponding to (3.5).
Theorem 3.3: If

exp[

lim [|a®|*/n!]"" =0, (3.8)

then the right-hand side of (3.3) is an entire function of 7.
Proof: Let

IRII= % 7>

Iicj<n
then it follows from Lemaire’s theorem that (3.3) is an en-
tire function of ¢;; if

(3.9)

llltl}lm [[AR)|/RNVI”RI=0. (3.10)
Since the multinomial theorem implies
(Zr,j)kn H (ry)t,
=1
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and it follows from (3.4) and (3.9) that

ii}Ri =2||R |, 1‘[1 11 (r)!= (RD?,
- i e
we have

IA(R)I Hl|a§{,’l2

[ ~T(@RY)?

i)

|A(R)| IR| "[ o2 R:]vzuxu
[ <[ i

|a,‘;’|2 172||R ||
R,! ]

Since [|af’[*/R,]""®! (i=1,..,n) remain bounded as
||R ||, and at least one R; satisfies nR, >2||R ||, the condi-

tion (3.10) follows from (3.8).
Theorem 3.4: The condition (3.8) is necessary so that

© tn
i 12
Z a(l)2
n!

n=0

(Q,p“’ (xl)p(i)(xz)n) =

is an entire function of ¢,,.

Proof: Obvious.

By virtue of Theorem 3.3, if the coefficients a\” of
pP(x) in (3.2) satisfy the condition (3.8), then the right-
hand side of (3.3) defines a Fourier hyperfunction (of type
I). Next we have to show that these Fourier hyperfunctions
satisfy the (modified) Wightman axioms, formulated in Na-
gamachi and Mugibayashi®: (RO) Fourier hyperfunction
property, (R1) relativistic covariance, (R2) positivity,
(R3) local commutativity, (R4) spectral condition, and
(RS5) cluster property. Of these, (R0) and (R1) are obvi-
ously satisfied.

In order to show other properties, we define p{’ (x) as a
truncation of p” (x), that is, as a Wick polynomial of the
form

N . n,
o0 = § G
so that the Wightman functions for p§’(x) satisfy all the
(unmodified) Wightman axioms (see Wightman and Gard-
ing'). Since the right-hand side of (3.3) is an absolutely con-
vergent series, (2,08 (x,)p’(x,)Q) converges to
Q0P (x,)p™(x,)Q) as N—>co in the sense of Fourier
hyperfunctions. Thus we easily see the positivity (R4).
However, it is difficult to verify (R3), (R4), and (RS5) in
this manner, so we use the Euclidean theory.

The theory of Osterwalder and Schrader!* states that
the Schwinger functions for py’ (x) satisfy the Osterwalder—
Schrader (OS) axioms, namely, (EQ) distribution property,
(E1) Euclidean covariance, (E2) positivity, (E3) symme-
try, and (E4) cluster property. The Schwinger function cor-
responding to the Wightman function
(2,00 (x,) ™ (x,)Q) is just the right-hand side of (3.3)
with z; replaced by S, (v, —¥;)
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Now we show that they satisfy the modified OS axioms
(E0’') — (E4’) of Nagamachi and Mugibayashi.” Axiom
(E0’) follows from the estimate (2.5); (E1’) and (E3') are
obvious from (2.2) and (3.3); and (E2’) follows from the
positivity of Schwinger functions of p’ (x). Finally we show
(E4'). Let S, (¥,,....¥, ) be the Schwinger function (3.3)

with z; = S, (; — ;). From (2.5), ¢; converges to zero as
— y; goes to infinity. If y, — y;, 1<i<k <j<n, goes to infin-
ity,
T*= ] )"

IKi<j<n
converges to zero unless all r; for 1<i<k <j<n are zero.
Therefore we have

I a)n™.

k<i<jn

re=|

I1 (t.-,-)’"]

I<i<j<k

Thus, S, 1PV s1 +AGyp, +Aa) for a(#0)eR*
converges t0.S (¥1sees Vi Sy _ k Wi 4 15+-Va ) S A goes to in-
finity. This proves (E4').

The theory of Nagamachi and Mugibayashi’ states that
the Schwinger functions satisfying (E0')-(E4') uniquely
define Wightman—Fourier hyperfunctions (of mixed type)
satisfying (RO')-(RS') of Ref. 7. Since (3.3) is a Fourier
hyperfunction of type I, the resulting Wightman—Fourier
hyperfunctions satisfy all the (modified) Wightman axioms
(RO)—-(RS) of Ref. 3.

Let p®(x) of (3.2) be either ¢(x) or
p . (x) =:e*®™: then by the reconstruction theorem
(Theorem 6.1 of Ref. 3), the Wightman functions (3.3) de-
fine the system of fields #(x) andp , (x), thatis, there exists
asystem of Hilbert space H with a unique vacuum ), unitary
representation U(a,A ) of the Poincaré group, and field oper-
ators ¢(x) and p, (x) defined on a dense subset D of H
satisfying the modified Wightman axioms (W0)—(W5) of
Ref. 3.

IV. DERIVATIVE COUPLING MODEL

The Lagrangian density of the derivative coupling the-
ory of neutral scalar meson in four-dimensional space-time
is

L(x)=Lg(x)+L,;(x), 4.1)
with
Le(x) = — ¢(x)(## 3, + M)p(x)
— (@, 6(x)) + m?p(x)’},
Ly (x) = ig(@(x)¥*9(x))3, $(x) .

Since the coupling constant g has the dimension of length in
natural units, the power-counting argument suggests that
this theory belongs to the class of nonrenormalizable quan-
tum field theories.

We quantize it by path integral; more precisely, we cal-
culate the Schwinger function in Euclidean lattice theory (of
infinitesimal lattice spacing). The reason the Schwinger
function can be calculated explicitly is that a set of transfor-
mations
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Yx) =P XY (x), Plx) =e™ Y (x)
converts L(x) of (¥(x), $(x), $(x)) into L (x) of (¢ (x),
7 (x), $(x)).

From now on we use the nonstandard analysis (see Da-
vis'®). Let N be an infinitely large hyperreal number and
define L = N? and an infinitesimal A = 7r/N. Let *Z be the
set of all hyperintegers and I' = A*Z/2LA*Z be a lattice
with an infinitesimal lattice spacing A and an infinitely large
length 27 N. The number of lattice sites of T is equal to L.
Let e, be the vector of length A parallel to the uth coordinate
axis (¢ = 0,...,3). Let *R be the set of all hyperreal numbers.
We define a measure G(®) on **R” by

G(®)=C °"P[‘§‘Z D(y)
yel*

3 d(y+e,)+Py—e,) —200)
x[z AZ -
2 =0

- m’d>(y)]A‘] do®y), (4.2)
L

where C is a normalization constant. We also define 2 mea-
sure D(W',¥?) on the hyper-Grassmann algebra A generat-
ed by {¥! (0),¥2 (»); @ = 1,..,4, ye*} by

D(V,¥?)

=C’ exp{y;\llﬂ(y) L}i"oy,’:’vﬂ + M]\l/‘(y)A“]

4
XI] Il 4% 0)a¥e (), (4.3)
ye

a=1

where C' is another normalization constant,
V() = (Wi o,.. ¥ )",
\I’l(y) = (‘I’i (y)r"’\l’i (y))T,

_ (% 0 _ Y _iaj)
7'g‘(o - ) rf—(ia, o )’
j=1’293’

a=(1 0) a=(o 1)
°~ v\ 1t/ '\ o)
Y R
*\i o/ TPV -1

and
Viv, () =y +e) -V )/A,
V.U, () = if k=12,
g VoV ) =W, () — ¥, (¥ —e,))/A,
if k=34.

Namely V, = 4{(V,5 + V) +¥§(V,} —V, )} Theinte-
gration of the Grassmann algebra is given by the rule

fd\w;(y)=o, fw';(y)d\w;(y>=1

(see Berezin'S).
Now, G(®) is a Gaussian measure whose covariance

f¢@1)¢@2)6(¢)

has the standard part that coincides with the Schwinger
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function §,, (y; — y,) of free neutral scalar field of mass m.
The covariance

f WL () W2 (7)) DOV, )

of the measure D(W',%?) has the standard part that coin-
cides with the Schwinger function R,,, ; of free Dirac field
of mass M without suffering from the doubling problem of
lattice fermions (see Nagamachi and Mugibayashi!”).

Let us define the Euclidean lattice interaction Lagran-
gian density L, (), which corresponds to L, (x) of (4.1), by

3
L](y) =%w2T(y)eig@(y) zoyf[P-Pwl(y"'eu)
#:

X (exp [ —igd(y+e,)] —e #*)/A

+P_W(y—e,)(e”

— exp[ —igP(y—e,)])/A],
where P is the projection operator defined by

P, =0zxvHr2.

If we replace infinitesimal differences by derivatives, L, (p)
becomes (the Euclidean version of) L, (x).

Now we calculate Schwinger functions. The two-point
Schwinger function is calculated as

J“E’: ) 7109 exp(gﬂq (y)A‘)D(‘I",‘l’z)G@)
\YE

-1
X U exp(24L,(y)A4)D(W‘,\Il2)G(<1>)] . (45)
el
If we change the variables of integration by
\l,l(y) — emo)\yrl(y)’ \I,Z(y) _ e—igO(y)wrZ(y) ,
then (4.5) becomes

(4.4)

feW(y.)W;1 (yl Ye~ ig‘l’(yz)\FEZ (yz )D(WII’WIZ)G(¢)
N J Y ) YF 0 DY)

xJ'el'x@(y.)e-—i@(yz)G(q)) .

The standard part of f¥.' (y,) Y52 (»,) D(¥'",¥"?) is the two-
point Schwinger function

Raas 0) = {ngo 7’f( 3;

of the free Dirac field, where y = y, — y, (see Nagamachi
and Mugibayashi'’). But fe¥®0ve ~ #02G(®) is infinitely
large and has no standard part. This infinity, however, can
be removed by Wick ordering with respect to the Gaussian
measure G(®), that is, (:e¥°0); ¢~ €®02).G(P) has the
standard part exp {g>S, (»)}, where y=y, —y, with
y1#y,. Thus, after the infinity is removed, the two-point
Schwinger function of the derivative coupling theory defined
by (4.1) turns out

RM;a.ﬁ (y)efsm(y)
and the corresponding Wightman function is
Gt (X)E2® = Wi (x) .

)+M} S.() (46
aB

4.7)
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Here x = x, — x,, and
Gapia (%) = (i#9, + M) gD 7 (x) = W55 5(x)
is the two-point Wightman function of the free Dirac field
W 5is (%) = ¥ 5ip (%1%5) = (4 (x,)95 (x2) D),
where ¢ (x,) = $(x,) and ¢*(x,) = P(x,).

Let
Z7V= exp[fo(O)’GUD)] (4.8)
be an infinitely large number corresponding to

exp{gS,, (0)}, then
o TBP0), = 7 —H2,+ 820

If we define renormalized fields W% (), i = 1,2, by
R =Z W) (4.9)
and the renormalized Lagrangian density Lg,;(y) and a
measure D (V5,¥%) by
L (VR (0),% (0,2 () =L, (¥' ), ¥’ (»),2 (),
Dy (W3, ¥%) =D(V,¥?),
then the quantity

[0, (yz)exp( 3 Les @)A‘)
yel*
XDy (¥}, %%)G(P)

-1
X Uexp( > Lps @)A‘)DR (Wr Y% )G(<1>)]
el *

has the standard part (4.7), since this is equal to the expres-
sion (4.5) multiplied by Z —.
Let

¥ o0 (X1yenXy ) = (Y7 (X)) 97 (x,)0)

be the n-point Wightman distribution of free Dirac field,
where r = (ry,...,5,), @ = (ay,..5a,), ;= 1,2, @) = 1,...,4.
Then the corresponding Wightman function of ¢, ¢ in (4.1)
is

Y o (X15eX,)

=exp[ 2 ( _ 1)”+rj_lD§,._)(x1 _xj)]

I<i</<n
KXW o (XpseesXy) . (4.10)

Thus the theory defined by (4.1) is renormalized by the field
strength renormalization (4.9), but its Wightman functions
(4.10) are not tempered distributions.

Let {H, Q; ¢(x), p_. (x); U(a,A)} be the system de-
fined at the end of Sec. III, and let {K, ®; ¢(x), ¥(x);
V(a,A)} be the system of the free Dirac field, then each of
these systems separately satisfies the (modified) Wightman
axioms. Therefore the system

{He Ko ®; P(x)0lkp, (x)ol,

Iy 8 9(x),I5 @ P(x); Ula,A) @ V(a,A)}
also satisfies the axioms. Let p‘”(x) stand for either
#(x) or p,(x). If the product p(x)

Y, (x)[ = (0 (x) ® Ix){Iy ® ¥ (x))]at the same point
x is defined, we can say that the original model (4.1) satisfies
the modified Wightman axioms.
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The vector-valued Fourier hyperfunctions
m_,p*“ (x,)Q [resp. IT;_ ¥ (x,)®] are the boundary
values of vector-valued holomorphic functions

PO rsesln_1) [resp. W, (556 1sesCn_1)] defined in
I =R*"XiV"_ where V_ is the forward light cone and
So=2y, §;=2,,1 — 2, z; =X; +iy; (see Theorem 4.3 of
Ref. 3). The function P ® (£grnlr_ 1) @ Vo (Eqpensln 1) iS
holomorphic in 7", and defines the Fourier hyperfunction

I;_, (0 (x,) 8 ¥ (x)) (R0 @),

which takes on its values in H®@K. Thus the product
P (x) ® ¢, (x) at the same point is defined.

APPENDIX: PROOFS OF PROPOSITOINS. ACONDITION
FOR THE LOCAL OPERATOR

Proof of Proposition 2.1: By (2.1), the calculation of the
Fourier transform of [D {,~’(x)]? reduces to the convolu-
tion of 8(k 2 — m2)8(k,);

(2¢r)“‘J‘¢S(k2 —m®)8((p — k)2 —m?)

X 0(ko)6(po — ko)dk . (A1)

Since the distribution (A1) is Lorentz invariant, if m #0 we
may evaluate it in the rest frame in which p = (E,0,0,0).
Introducing independent variables k,, k2, 6, and ¢ by

k,=rsinfcosd, k,=rsinfsing,
ky=rcos 8, r=[(ko)?— k212,
0O, 0<e<2m,

(A1) becomes

(21r)—4fa(k2 — m*)S(E? — 2Eky + k2 — m*)0(k,)
X 8(E — ko) (r/2)sin 6 dk * do d¢ dk,
= (2m)~* f 8(E, — 2Eky)0(ky — m)O(E — ky)

X [ (ko)? — m?]Y/2(1/2)sin 6 d6 d¢ dk,
= (27) "}(2E) ‘[(E /2)® — m*]'?0(E — 2m)

= (4(2m)*) " [E? — (2m)*]'*0(E — 2m)/E .
(A2)

Since this function is Lorentz invariant, we may write this
result in the following invariant form:

(4(27)%)~'0( py)0(P* — (2m)?)
X[ p* — (2m)* 12/ (p*)'2.
Since
S'XI'D(fg)>fegesS S
is continuous (see Treves'®), and
(2m) ~*(6(ky)8(k* — m?)
®0(90)8(q* — m?), ¢(k +q))
=471(2m)7*(0( po)6 (p* — (2m)?)
X [pz - (2m)2]”2/( pz)llz’ ¢(P)):
the Fourier transformation of [D § ~’(x) ] turns out to be
47127 20(py) 0 (P?) . (A4)

(A3)
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Proof of Proposition 2.2: For n =2, (2.10) coincides
with (A4). For general n we can prove it by induction as
follows:

lim (2) f (k2)"=20(k?)8(ky)
X6((p — k)% — m2)0( Do — ko)dk
= lim(Zﬂ')‘IJ‘(kz)"‘ZO(kz)
© m—0

XO(E? — 2Eky+ k? — m*)0(ky)O(E — ko)
X (r/2)sin 6 dk 2 d0 d¢ dk,

= lif_‘of(ZEko —E24+ m*)"~%0(2Ek, — E* + m?)
Xe(ko)e(E — ko) [(E —_ k0)2 — m2]l/2 dko
E
= En—l(zko_E)n—Z(E_ko)o(E)dko

E/2
=4""n(n—1)]7'E*"~DO(E)
= [4n(n — D]17'(P*)"~'6(po) (P .
The last equality follows from the same reasoning as that

leading from (A2) to (A3).
Proof of Proposition 2.3: The following inequality holds.

(2#)_1f(k2)""20 (k2 - (nm)z)e(ko)
X8((p — k)? — m2)9(po — ky)dk
- (21r>-1f(k2)"-20(k2 — (nm)¥0(ky)

XS(E? — 2Eky + k* — m?)
X O(E — ky) (r/2)sin 8 dk 2 d6 d¢ dk,

=J-(—E2+2Eko+m2)"‘2

X 0(— E?+ 2Eky + m* — (nm)?)
X 0(ko)O(E — ko) [(ko)? + E* — 2Eky, — m?)'/?
X 6((ko)* + E* — 2Ek, — m*)dk,

E—m
= (—E? +2Eko + m?)"~?

E /2 + (n®> — 1)m*/2E

X [(E — ko)? — m2)V20(E — (n + 1)m)dk,

E ~ m + m*/2E
<. (—E? + 2Bkp)"~?
E /2 + n*m*/2E

x[(E—ko+m2/2E)2—m2]”2
XO(E — (n + 1)m)dk,
= [4n(n —1)]'E*"—VH(E — (n + 1)m)
=[4n(n -] @PH" !
X0(pe)0(p* —{(n+ 1)m}?) .
The last equality follows in the same way as (A3) coming
from (A2). Using (A3) and (A5) we can prove by induc-

tion that the Fourier transform of [D {’(x)]" is dominat-
ed by

[@m*» '~ (n — D{(n —2)1}*] !
X (p2)n —20@0)092 — (nm)2)

(A5)
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for n»2, which is turn is dominated by (2.10).
The condition that (2.13) is a local operator: Equation
(2.13) is a local operator if and only if the support of

S e (—0)"(x) (A6)

n=0
is concentrated at the origin. Since §(x) is represented as a
hyperfunction by

~I |

o(x) =
o 11.13(21721)
and
3
!
(-0 = — a3y [[8"——,
no+..;n,=n( 0) lgl ! nol'"n3!

( —O)"8(x) is represented by

d,
(—D)"8(x) = Tt
ot = n z(?ino+l.“z§n3+l
where
3 (2m)!
d = e ! —l e . :
hoamy = (Mg + 2+ 13)1( — 1) ,],:,Io 2m(n,)!

The support of (A6) is concentrated at the origin if and only
if
n=0 nmy++n=n z(z,""'*' 1---23"3 +

is analytic for z, 0, j = 0,...,3, in other words,

o0
ng + 1 2n3 + 1
Cn Z dno....,n,w(zi 0T ey
n=0 ng+-+n=n

is entire, that is

lim  [le,]| |dn,..n, ]9 =0.

Ny + o 4 Ny = B0

(A7)

Since the inequality
|dno.,n, |<|dn,0.0,0| = (2")!/(217)4
holds for n = ny + - + n,, (A7) is equivalent to

lim [(2n)!|c,,|]"2" =0,
which is (2.12).
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J. Faraut

Départment de Mathématiques, Université Louis Pasteur, Strasbourg, France

G. A. Viano

Dipartimento di Fisica dell’Universitd, Genova, Italy and Istituto Nazionale di Fisica Nucleare, Sezione di

Genova, Genova, Italy

(Received 21 January 1985; accepted for publication 22 October 1985)

The diagonalization of the Bethe—Salpeter equation for the absorptive part of the amplitude is
reconsidered. In particular the mathematical tools required by the diagonalization, like the
Volterra algebra and the related spherical Laplace transform, are investigated in detail.

I. INTRODUCTION

In the past some attention has been paid to the problem
of a partial diagonalization of the Bethe-Salpeter equation at
fixed momentum transfer. The interested reader is referred
to Refs. 1-5. In this paper we return to these problems with
particular attention to the mathematical aspect of the ques-
tions.

The main points are the following: (a) to utilize to its
full extent the symmetry of the problem; and (b) to diagona-
lize the equation with a mathematical tool that allows deal-
ing with a class of amplitudes sufficiently large that their
growth properties have physical interest.

Concerning the point (a), it has been recognized long
ago'? that, taking the momentum transfer Q to be fixed, the
equation is invariant under the action of the SO,( 1,2) group
in the case of nonforward scattering (Q 2 < 0), and it is invar-
iant under the action of the SO,(1,3) group in the case of
forward scattering (Q = 0). Next it was observed that the
diagonalization of the Bethe-Salpeter equation for the ab-
sorptive part of the amplitude is considerably simpler than
that involving the whole amplitude.>* Indeed the support
properties of the absorptive part of the amplitude are such
that the integral in the Bethe—Salpeter equation is carried by
a bounded region. Furthermore if we suppose, following
Refs. 2-4, that the external momenta are spacelike (as we
shall indeed assume hereafter), then it follows that the inter-
nal momenta are spacelike, too.

Concerning the point (b), the diagonalization was tried
by means of the Laplace transform in order to deal with
amplitudes, which show a power growth, in agreement with
theoretical asymptotic bounds and with experiments.> In
spite of these efforts, a safe mathematical formulation of the
spherical Laplace transform, as well as of the Volterra alge-
bra, has not been given up to now, as it has been explicitly
remarked in Ref. 3. The purpose of this paper is precisely
that of covering this gap.

The paper is organized as follows: in Sec. II we consider
the generalized Volterra equations in R"; in Sec. III we intro-
duce the so-called Volterra algebra on the hyperboloid with
one sheet, and the associated spherical Laplace transform.
This algebra may be regarded as the analog of the algebra of

previous sections can be applied to the Bethe-Salpeter equa-
tion for the absorptive part of the amplitude in the case of
spinless particles.

Il. VOLTERRA KERNEL AND VOLTERRA INTEGRAL
EQUATION

Let X = R" and Q be the forward light cone in R" de-
fined by

P (2.1)
Weconsider on X theordering associated with Q:forxand y

in X we note x>y if x — y belongs to £, and x>y if x — y
belongs to the closure 2 of ). For this ordering, the set

D(yx) = {zeX | y<z<x} (2.2)
is bounded. It is empty if (x — y) does not belong to Q2.

A kernel K(x,y) is said to be a Volterra kernel if
K(x, ) is continuouson I' = {(x, y)|(x — y)eN2} and van-
ishes out of I'. The product of two Volterra kernels X; and
K, is given by

KK, (x,y) = f

D( y,x)
where K #K, is again a Volterra kernel. Hence, the space
V(X) of Volterra kernels is an algebra: the Volterra algebra
of the ordered space X.

If K is a Volterra kernel we define K * by

K¥ =K, (2.4a)
K# = g#k-Dyg (2.4b)

Problem: For K and B given in V(X) find a kernel A4 in
V(X) such that

A(x!y) —f

D( y,x)

—x:_1>0, xo>o.

K, (x,2)K,(z,p) dz, (2.3)

K(x,z) A(z,y) dz = B(x, ) . (2.5)

This is a Volterra integral equation of the second kind. It can
be written as follows:

A—K#§4=8B. (2.6)

Theorem 2.1: Equation (2.5) has a solution that is
unique. It is given by

zonal functions on the upper sheet of the hyperboloid with A (x, y) = B(x, y) + R(x,z)B(z,y) dz, 2.7
two sheets, associated with the spherical Fourier transform. D( y.x)

In Sec. IV we show that the analytical tools developed in the =~ where
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Rx,p)= Y K¥(x,). (2.8)
k=1
The series (2.8) converges uniformly on bounded sets and R
is a Volterra kernel.
Proof’ This result was proved by Riesz® in a more gen-
eral setting; the following proof is essentially due to him.
For (x, y)eﬁ we let

r(x,y) = [(xo—p0)* — (x, —y1)?

- _(xn—l _yn_l)Z]l/Z’ (29)

and define
H, (a)=7""222"YT(a/2)T([a +2—n]/2),
(2.10)

where I' denotes the Euler gamma function. Riesz defines
the kernels I, (generalized Riemann-Liouville kernels):

1\/H, (a) r(x, )",

if (x—y)eQt;
0, if not.

I,(x,py)= (2.11a)

(2.11b)

The kernel I, is locally integrable if @ > n — 2, and satisfies

the following composition relationship: '
Lil,=1,, .. (2.12)
(a) Let X be a Volterra kernel. For x,, y, fixed, there

exists a constant M > 0, such that for x and y in D( yy,x,),
IK(x,y)|<M. Therefore

|K(x,y)|<MH, (n)I,(x,y), (2.13)
and

|K *(x, p) |<[MH,, (m) "I ¥(x, ) . (2.14)
The composition relationship (2.12) gives

I*=7, . (2.15)
Finally we obtain, for x and y in D( y,,x,)

|K #(x, y)|<{[MH, (n)]*/H, (kn)}

X [r(x, ) ]*< -1 (2.16)
(b) We define
R(x,y) = kil K¥(x,y) . 2.17)

By the inequality (2.16) it follows that the series (2.17) con-
verges uniformly on bounded sets and its sum is a Volterra
kernel.

We verify easily that

is a solution of Eq. (2.5). For proving uniqueness, let us
assume that

Kia=4, (2.19)
then

K¥4=4,
and as k goes to infinity, we obtain 4 =0. ]
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Ill. VOLTERRA ALGEBRA ON THE HYPERBOLOID
WITH ONE SHEET
A. The hyperboloid with one sheet

Let X be the hyperboloid with one sheet in R>, defined
by

—x+xi4x2=1. 3.1

The Lorentz group G = SO, (1,2) acts transitively on X. The
pseudo-Riemannian metric induced on X by the Minkowski
metric

ds* = dx} — dx* —dx3 (3.2)

is invariant under G. We shall denote by do the correspond-
ing surface element. The isotropy subgroup of the point
e, = (0,0,1) is H =8S0,(1,1); i.e., the one parameter sub-
group of the following matrices:

coshd sinhd O
hy =|sinhd coshd O0]. 3.3)
0 0 1

We introduce also the one-parameter subgroup A of the fol-
lowing matrices:

coshé O sinhé
a.=| O 1 o 1], (3.4)
sinhf O cosh&
and we define
A, ={a,c4|£>0}. (3.5)

Let © be the forward light cone in R® defined by
x2 —x? —x2>0, xo>0. As illustrated in Sec. II, we can
associate with Q an ordering in R for x = (x4,%,,X,),
Y= (Yo» Y1, ¥2), we note x>y if x —y belongs to 2, and
x>yifx — y belongs to the closure Q of Q. For this ordering,
the set

D(yx) = {zeX | y<z<x} (3.6)

is bounded. This ordering is invariant under G. Let G, be
the set of gin G such that g e, > e,, e, = (0,0,1). The set G,
is a semigroupand 4, = AnG .

Proposition 3.1: The semigroup G has the following
decomposition:

G,=HA,H. 3.7

Proof: It is enough to prove that, if x belongs to X and
satisfies x > e,, then there exist £ >0, and ¢ real such that
x=hsa.e,ie,

xo, = sinh & cosh ¢,
x, =sinh £ sinh ¢,
x,=cosh§.
The point x belongs to X,
—x3+xt4+x3=1,
and x — e, belongs to (2,
x2 —xt —(x;—1)?>0, x,>0.

Therefore x,>1, and there exists £>0 such that
x, = cosh §. We have

xg-x%=(siﬂh§)2, x0>0’
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therefore there exists +# real such that
xo =sinh £cosh¢#; x, =sinh £ sinh . ]
The numbers (£,:%) will be called the polar coordinates of X.

In terms of them, the surface element is given by
do = sinh £ d¢ dJ.

B. The Volterra algebra

Let I be the graph of the ordering, defined in Sec. III A,
restricted to X: T = {(x,y)eX XX |y<x}. A function
K(x,y) on X XX is called a Volterra kernel if X is contin-
uous on I' and vanishes out of I, In order to make clear our
exposition, let us restate the composition product of two
Volterra kernels X, and K, in the case of the hyperboloid
with one sheet; this product is defined by

K #K,(x,y) =f

D( y,x)
where the set D( y,x) is defined by Eq. (3.6). The integral
makes sense without boundedness assumption on the ker-
nels X, and K,, since the set D( y,x) is bounded. Further-
more the kernel K #K, is again a Volterra kernel, hence the
set of Volterra kernels is an algebra which is called the Vol-
terra algebra V(X) of the ordered space X.

“The kernel X is said to be invariant under G if, for any g
inG

K(gx,gv)=K(x,y) . 3.9)
The set ¥(X)"! of the invariant Volterra kernels is a subalge-
bra of V(X).

We can identify an invariant Volterra kernel X with a
function f on G, which is continuous on the closure G of
G, vanishes out of G, and it is bi-invariant under H. The
identification is given by

K(geye,) =f(8) . (3.10)
Hence we shall consider the elements of the algebra V'(X)" as
functions on G as well.

Theorem 3.1: The algebra V(X)" of invariant Volterra

kernels is commutative.
Proof: We define

-1 0 O
J=1 0 -1 0},
0 0 1

and we consider the automorphism o of G defined by
o(g)=Jgl. (3.12)

The set of elements of G fixed under o is the subgroup H.
This automorphism is associated with the symmetry of X
given by x— Jx, in the following sense:

J(ge,) =0(g)e,. (3.13)

The fixed points of this symmetry are e, and — e,. With
respect to the ordering associated with the forward light
cone this symmetry is decreasing, i.e.,

K(x,2)K,(z,y) do(z), (3.8)

3.11)

y<xeJx< Jy. (3.14)
For a function f on G we let

f(g)y=rlo(®), (3.15)

S =fg""). (3.16)
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Next we have the following lemma.
Lemma: For a function f in V(X)" we have

fo=f". 3.17)
Proof: If f belongs to G, then by Proposition 3.1 we
have
g = hlag hz ’
with 4, and 4, in H, £ > 0; then
O'(g) =h10'(a§) h2=h1a_§ hz,
g_1=h2_la_§ hl—l .
Therefore, if f is bi-invariant under H

flo(@)=rg™,
and the lemma is proved. Theorem 3.1 follows from the
lemma because, if f, and f, belong to ¥(X)", we have

(LBL) =fT8S7F, (3.18)
(L)' =fr4f!. (3.19)

Indeed for the corresponding Volterra kernels we have
K°(x,y) =K(o(x),0()), (3.20)

K"(X,J’)=K(y,x), (3.21)
and the proof follows easily. |

Remark: For a function f belonging to ¥(X)" neither
f?nor f° belongs to ¥(X), but to the Volterra algebra
related to the ordering associated with the backward light
cone.

A function belonging to ¥(X)" depends only on one
variable; for such a function f and for §>0, we will use the
following notation:

Sf(hyag hy) =f[cosh§]. (3.22)

The following proposition provides an explicit formula for
the composition product in ¥(X)".

Proposition 3.2: For two functions £, and f,in V(X)" we
have

8, [cosh £] =2Jj{ 0

(&7

fi [cosh € cosh 7

— sinh £ sinh 7 cosh ¢ ] dz?]

X/, [cosh 7] sinh 7 dr,
where @ = a(£,r) is the positive root of the equation
cosh £ cosh 7 — sinh £ sinh rcosha =1. (3.24)

Proof: Let K, and K, be the corresponding Volterra ker-
nels. We have

(3.23)

K #K,(x,e,) -—-f K, (x,z) K,(z,e,) do(z) . (3.25)
X

We let
x=az e, y=hsa.e,.
Then the integral becomes

K #K,(a;exe,) = f K (azexhsa.e,)K;(a, ey e,)
Xsinh 7dr dd . (3.26)
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Because of the invariance of the kernel X, we have
Kl (a;ez,h"a.rez) = Kl(a _ fh — aagez,ez) .

Ifg=a__h_sa,belongstoG,,then for Proposition (3.1)
we have

a_ Th — ,9(15 = hla_‘hz ’
with 4, and 4, belonging to H; furthermore
cosh s = cosh £ cosh 7 — sinh £ sinh 7 cosh ¢

>1. (3.27)

C. The Poisson kernel and the spherical functions

We introduce now the one parameter subgroup N of G
consisting in the following matrices:

14422 =z 322 )

n(z) = z 1 z (3.28)
-3 -z 1-}2
The map
N XA—X, (n(z).a:)-n(z)ace,

is a diffeomorphism of N XA on the open set

{x€X |x, + x, > 0}, which contains the set {xeX |x > e,}. If

x = n(z)age,, we have

xo=sinh & + 2%, x,=z¢¥, x,=cosh§—}2%*,

and n(z)a, belongs to G, i.e., ge, > ey, if and only if £> 0

and |z| <1 — e~ £ It follows that G, is contained in NA , H.
The numbers (z,£) are called horicyclic coordinates. In

terms of them, the surface element is given by do = ¢° dz dE.
For a complex number A we define the function P* by

P x)=e"*, if x=n(z)ace,, (3.29)
and the Poisson kernel P*(x,#) by

PA(x,3) =P*(h _4x). (3.30)
We have

PH(x) = (x5 4 x,) ~* (3.31)

P*(age,?) = (cosh§ +sinh£cosh ) ~*.  (3.32)

Proposition 3.3: (a) The function P* satisfies the rela-
tionship

P*(n(z)a.x) =e~*P*(x). (3.33)
(b) Forx>e,,ReA1>0,

flP‘(hx)|dh =f+w| PHx,)|d¥< 0.  (3.34)
(::I) Furthermore, if—g“l,)elongs toG,,

LP‘( ghx) dh = P*( gez)LP*(hx) dh . (3.35)

Proof: To prove (a) we let
x=n(z")a.e,,

then
n(z)a;x = n(z")ag, .e,,

with
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2" =z+4e" 52
because
n(z") = n(z)a.n(z')a_, .

(The point is that the subgroup 4 normalizes the subgroup
N.) Hence

PHn(z)agx)=e~*¢+7 = e~ #PXx).

To prove (b) we may assume that x = a,e,, with £ > 0, then

f |PA(hx)|dh
H

+ o
=J‘ (cosh & + sinh € cosh #) "R** d¥ < o0 .

To prove (c) we let

F(g) =fP"(ghx) dh .
H

The function Fis right invariant under H. If g = n (2)a, we
have

F(n(z)a;) = LP"(n (2)a, hx)dh,
and using (a) we obtain

F(n(2)a,) = e“‘fj P*(hx) dh .
Since G, is contained inHNA +H, (c) is proved. |
by For Re 4 > 0 we define the spherical function ®, on G,

®,(g) = f P*(hgey) dh.
H

The function P, is biinvariant under H and

(3.36)

+ o
®, [cosh £ ] =f (cosh & + sinh £ cosh &) ~*dé.

(3.37)

This function is essentially the Legendre function of the sec-
ond kind. With the classical notation we have

®, [cosh £ ] =20, _, (cosh §)

[see Ref. 7, Vol. 1, formula 3.7(3), p. 155].

Next we have the following theorem.

Theorem 3.2: The spherical function ®; satisfies a pro-
duct formula: forg, and g, in G

f D, (ghg,)dh=D,(g)P,(8). (3.38)
H

This formula can also be written, wheng, = g, and g, = a,,
as follows:

+
J. ®, [cosh £ cosh 7 + sinh £ sinh 7 cosh ¢ | d¢
=@, [cosh& ] @, [cosh7]. (3.39)

Proof: Using formula (3.35) [see Proposition (3.3)],
we have for Aand 2’ in H:

f P*(h'g, hgye,) dh = P*(h'g,e,) P, (&) -
H
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The product formula is obtained by integrating with respect
toh'. |

A more general product formula has been proved by
Durand for the Legendre functions of the second kind [Ref.
8 formula (13), p. 359, or Ref. 9, formula (3.5), p. 80].

D. The spherical Laplace transform

We define the spherical Laplace transform f of a func-
tion f belonging to the Volterra algebra F(X)* by

fA) =J.f(x)P‘(x) do(x), (3.40)
X

whenever the integral converges. Integrating in polar co-
ordinates and using the previous notations, we obtain
+ oo

FA) = Sflcosh £ 1®, [cosh & Isinh£dE.  (3.41)

Theorem 3.3: Let @ >0, and let ¥(X)", be the space of
functions f in ¥(X) such that

1)l = j | fO0)|P(x) dor(x) < oo -
X

The space ¥(x)!, is a subalgebra of ¥(X)", and for two
functions f, and f, in ¥(x) we have

LA #Lolla <l Aillall foller - (3.43)

The spherical Laplace transform fof afunction f in V(x)"
is defined for Re A >a, analytic for Re 4 > &, and, for f, and
fpin V(x)}, we have

f[i8H) =LA /A .

Remark: Since

®,[cosh & Joec(A)e ¥ (f>w),
with

(3.42)

(3.44)

+ o
c(A) = 2<*+*>f (1 + cosh &) ~* 9

0

=2{r T(A)/T(A+}),
a function f of ¥(X)" belongs to V(x)! if and only if

f+w|f[°08h§]| A /DR
(V]

Proof: (a) Let f belongto ¥(x)!. For Re A>a, and for
g in G we have

(3.45)

ff( g 'x)P*A(x) do(x) = J-f(X)P‘( gx) do(x) .
X p.¢
Using polar coordinates we obtain
[ napp*gha,) dhsinn ¢ dg
HxA,
and using formula (3.25) [Proposition (3.3)] we get
f Sfla)PA( g)(fP‘(hag ) dh )sinh EdE
A, H

=P*(g) fl).

If X is the corresponding Volterra kernel, the previous rela-
tionship can be written

fK(x,y)P‘(x) do(x) = P’l(y)f K(x,e,) P*(x) do(x) .
p.¢ X
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(b) Let f; and f, belong to ¥(x)"; K, and K, be the
corresponding Volterra kernels. We have

J- f K (x, »)K,( y,e,)P*(x) do(x) do( y)
X JX

= f K,(x,e,)P*(x) do(x) f K,(y,e,) P y)do(y),
X X
and therefore

S -~ ~

HBAQA) =f1QA) £,(A) . |
Let us compute the spherical Laplace transform of a func-
tion £, using horicyclic coordinates:

FA) =J;+ ) Ul;m_e_;f(n(z)ag)dz] e~ U-DigE

(3.46)
We define the Abel transform of f as
W@ =n [ S, (3.47)
|zZ|<1 —e™

so that the spherical Laplace transform is the composition of
the Abel transform and the usual Laplace transform:

) =f+ - Af(Ere—A-VDEdg
(4]

It follows that, under the Abel transform, the composition
product of the Volterra algebra V' (X)" is transformed in the
usual convolution.

(3.48)

We have
yoRrd| 7loost g~ L 2]
lel<l—e~f 2
- f[cosh £— lzz] dz
2| <2 sinh (£ /2) 2
=3 f f[coshr) sinh 7 dr.
0 Jeosh & — cosh r

(3.49)

Let us recall the classical inversion of the Abel integral trans-
form: if

g(v) = f LWy, (3.50)
Wv=u
then
f(v):lfv-i,“‘_)_ =i—d— _g_(l_‘)_.du.
mJo Jv—u m dvJo ,[v.._u
(3.51)
Therefore the Abel transform ¥ is inverted in the following
way: if F(§) = Qtf(g), then
flcosh £] = r FO g
© V2m Jo Jcosh€ —coshr
=__1__ 1 _i_f‘ F(r)sinh r dr
V2 sinh § d§ Jo \Jcosh £ — cosh r
(3.52)

Finally, using the inversion formula for the usual Laplace
transform, we obtain the following inversion formula for the
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spherical Laplace transform.
Proposition 3.4: Let f be a function in ¥(x)_, such that,
for o5a,

+ oo
f | flo+iv)| vldv< o, (3.53)
then, for £ >0,
+ w .
rleosngl = [ pgorm i@ m v,
TJw
(3.54)
| with
/1 _i '3 e(/l— 172)r
(§A) = f dr. (3.55)
v 7v2 Jo \Jcosh € — cosh 7

Proof: As a function of v, f(o + iv) is the usual Fourier
transform of

e~ (o — 1/2)§F(§) —e~ (o — lﬂ)f@[f(g)
[see formula (3.48) ]. Therefore

<+ oo

F&y=—— [ 12+ fo 4 iv) dv,
2T

— o

and, since

=+ oo .
f | lo+iv)| |v|dv< oo,

- o

we have
1 + o
F'(§')=—f (c—172+iv)
rJ-w

Xele—V2+™Efig Liv)dy.

Therefore, using the inversion formula for the Abel trans-
form and interchanging the order of integration we obtain
the result. [ |

Remark: Since for & <0 we have F(£) =0, and there-
fore F'(£) =0, then, for £>0

+
j (a_%+iv)e—(a—l/2+iv)§‘7'(a.+iv) dv=0.

Therefore
, 1 (*= 1 ,
F'(§)=— o——+iv
TJ_ow 2

Xcosh[(a — —%— + iv)§ ] flo+iv) dv,

and .
fleosh €1 =-51; _: o+ iv) Ko+ iv) dv,
(3.56)
with
0(5’1):0(1—;)[‘ cosh(d —4) r
7 Jo \Jeosh & — coshr

This function can be expressed in terms of the Legendre
function of the first kind as follows:
HEA) = (A —4) P;_,(cosh§) . (3.57)

The inversion formula of Proposition (3.4) and the last one
[Eq. (3.56)], have been obtained by Cronstrom and
Klink.' The spherical Laplace transform has been studied
in a more general setting by Mizony."!
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E. Volterra algebra on the hyperboloid with one sheet in
R4
A Volterra algebra can be associated to the hyperboloid
with one sheet in R” defined by

—xi4+xi4xs+ - +x2_, =1 (3.58)
in a way similar to that exposed above; indeed the results are
essentially the same.

We will write below, without proof, the explicit form of
the results concerning ¥ (X)" for X being the hyperboloid
with one sheet in R*: — x% + x? + x2 + x? = 1. Indeed, in
the latter, we shall need these results.

A function f of V(X)" depends only on one variable.
For £>0, we write

fthyay hy) =flcosh€1; hyheH .
For two functions f; and f, in ¥(X)" we have

(&,7)
fi#folcosh £] =2wf[ 0

(3.59)

filcosh & cosh 7

— sinh £ sinh 7 cosh 4 ]sinh ¢ d¢ ]

Xf, [cosh 7] (sinh 7)? dr,
where a(§,7) is the positive root of the equation

(3.60)

cosh £ cosh 7 — sinh £ sinh 7 cosha = 1.

This product is related to the ordinary convolution product
in the following way: if we let

Fi[cosh{] = ff, [cosh 7]sinh 7 d7,
0

we obtain
fi1#/f2[cosh £]sinh &

=21rfFJcosh (& — 7)] fo[cosh 7]sinh 7d7.
0

(3.61)
The spherical functions are given for Re 4 > 1, by
D, [cosh{ ]

+ oo
=f (cosh £ + sinh £ cosh ) ~* sinh & d¢
0

1 1
= e—A—DE

A—1sinh§
The spherical Laplace transform reduces to the ordinary La-
place transform as follows. If we assume that, for a > 2,

=+
[T 1o g1 e e dg <,
0

then, for Re A>a,

(3.62)

(3.63)

+

fA) =27 ®, [cosh £ ] f[cosh £ ] (sinh £) dE

+ o
_ (AZLTI)L e~ =D& f[cosh £ Isinh £ dE .
(3.64)
If we let
Flcosh¢] =rf[cosh r]sinh rdr, (3.65)
(+]
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. S~ - ~
then we obtain LH#LQ) =H(A) LA . (3.67)
FA) =27 f e e~ A= VR [cosh £ ] dE . (3.66) I we assume furthermore that, for o>,
0 +
f ] d , 3.68
The spherical Laplace transform carries a convolution pro- f -= [flo+ ] dveo (368)
duct into an ordinary product: then
Jd
fleosh £ ] =—1—“l_‘q'f+w e+ flo + iv) dv
4r?sinh € dE J_
' + .
=;}?sin1h§ =14 T o 4 i) dy
+ o : ) -
=# (0—1+w) s“’h[("s;;;"’)f 1 #o+iv) dv. (3.69)

The proof of the last equality uses the same argument as for
proving (3.56).

V. BETHE-SALPETER EQUATION
A. The Bethe-Salpeter equation as a Volterra equation

We consider the following integral equation for the scat-
tering amplitude A (see Refs. 1-5):

A(PK,Q)
~B(PK.Q) +f N(P.P'Q) A(P'K,Q)d*P'.
R‘

(4.1)

In this equation, A is an unknown function and represents
the amplitude; B and N are supposed to be known and repre-
sent the potential and the interaction kernel, respectively.
The four momenta P,P’, K,Q are graphically represented in
Fig. 1 [see also Ref. (3)].

In some instances it may be useful to introduce the so-
called Mandelstam variables: s = ( P + K)? = squared en-
ergy in the center of mass system; ¢ = Q ? = squared momen-
tum transfer in the center of mass system.

We restrict our attention to the absorptive part of the
amplitude; indeed it satisfies an integral equation with the
same kinematic structure as the whole amplitude.>* But the
support conditions of the absorptive part of the amplitude
A, of the potential B and of the interaction kernel N imply
that the integral equation (3.1) is a Volterra equation.

Indeed the absorptive part of the amplitude vanishes if
( P+ K)?<Oorif ( Py + K,) <O (see, for instance, Refs. 12

P-Q Q . Q Q P
3 K+ 2 5 K+ 3

r

and 13). It follows that, as a function of Pand X, the support
of A is contained in the set

{(P.K)|(P+K)*>0and ( P, + K;)>0} . (4.2)

Thefunction B has the same property, and N satisfies a simi-
lar one: the support of N is contained in the set

{(PP)|(P—P')’>0and (P,—P;)>0}. (4.3)

Moreover we suppose that the amplitude A, the potential B,
and the kernel N are continuous functions on the sets con-
taining the support; this latter assumption is quite restric-
tive, but at this stage of our research we do not take care of
specific and more realistic models for the kernel and the po-
tential.

Therefore by letting P=x, K= —y, P’ =z, and for-
getting about Q, which is regarded as a fixed parameter (re-
call that we are working at fixed momentum transfer), the
Bethe-Salpeter equation becomes a Volterra equation of the
type we considered in Sec. II and we can apply to it the
results of that section.

B. Partial diagonalization of the Bethe-Salpeter
equation

The functions 4, B, and N involved in the Bethe-Sal-
peter equation are functions depending on three four-vec-
tors, invariant under the Lorentz group SO,(1,3) acting si-
multaneously on the three vectors. For fixed Q, the functions
A, B, and N are functions depending on two four-vectors,
invariant under the subgroup G of the Lorentz transforma-
tion fixing the vector Q. We will look at the two following

KeG

t=Q%__, = Q +

w—p

Py

nN|O

e P,O 8
K2 +2 K2
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FIG. 1. Graphic representation of the Bethe-
Salpeter equation.
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cases: (a) forward scattering, in this case Q =0 and the
group Gis SO, (1,3) itself, and (b) nonforward scattering, in
this case ¢ = Q? is negative. We may choose a coordinate
system such that Q = (0,0,0,/ — ¢ ); in this case the group G
is then SO, (1,2).

1. Forward scattering

Before analyzing the Bethe-Salpeter equation, let us
consider a Volterra kernel 4(x, ) in R* invariant under the
Lorentz group SO,(1,3), acting simultaneously on the two
vectors x and y. If x and p are spacelike we let

—wt+ui+ui+ui =1, (44a)
y=nm, — R+l +E+vi=1. (4.4b)

The invariance property of A(x,y) implies that A(x,y)
depends only on p,r, and the inner product (u,v)
= uovo - ulvl - uzvz — u3v3:

x=pu, p>0

r>0;

A(x, ) =A[pr;(up)] . (4.5)
The support condition of the kernel A implies that
— (u0)> (P +p*)/2mp . (4.6)

Let us analyze explicitly the product of two Volterra kernels
N and A, invariant under SO, (1,3):

N§A(x,p) =f

D( y,x)
To this purpose we can choose the following coordinates
(see also Ref. 4):

N(x,z) A(z,y) dz. 4.7)

x=(psinh§,00,pcosh ), p>0, (4.82)
y=(0,00r), r>0, (4.8b)
z= ( p'sinh 7 cosh &, p’ sinh 7sinh ¥ cos @,

p' sinh 7sinh ¢ sin g, p’ cosh7), p'>0. (4.8¢c)
From (z — y)eﬁ, we get

>0, cosh7> (P +p%)/ 210, 4.9)
which implies

7> |log( p'/r)| . (4.10)
From the condition (x — z)e{2 we get
p sinh £5p’ sinh 7 cosh ¢, (4.11a)
cosh £ cosh 7 — sinh £ sinh 7 cosh ¢

>(P*+p) /20051, (4.11b)
which imply

&30, &£—r>|log(p'/p)|, (4.12)
and

¢ |<a(ém), (4.13)

where @ = a(§,r) is the positive root of the equation

cosh £ cosh 7 — sinh £ sinh 7cosha = 1. (4.14)
Then

0<|log(p'/p)|<7<& — |log( p'/p)|<& , (4.15)
and it follows that

Vrp e 723K p'<\rp €672 (4.16)
We obtain finally
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N# A piricosh §]

P 72
=2 J‘r pdp f dr(sinh 7)?4 [ p',r;cosh 7]
i o

e €72

&)
X [ N[ p',r,cosh & cosh 7
0

—sinhé’sinh‘rcoshﬂlsinhz?d&], (4.17)

which is, precisely, for the integration with respect to 7 and
4, aconvolution product of the type considered in Sec. III E.
Under suitable conditions we can consider the partial
spherical Laplace transform of the amplitude A4 with respect
to the angular variables
+ o

A(prd) =2~ ®, [cosh &1 A4 [ p,r;cosh &)
0

X (sinh £)* d¢

+
=sz—1 A e~ A=Vig [ pricosh £ ]

Xsinh £ d£ . (4.18)
Since the spherical Laplace transform carries out the convo-
lution product of Volterra kernels on the hyperboloid into
the usual product, it is possible to analyze the Bethe-Sal-

peter equation. We obtain a partial diagonalization of the
equation as follows:

A(prd)
=B(prA) + 0+ " NCp oA APy pP dp
(4.19)
2. Nonforward scattering

We consider now Volterra kernels 4 (x, y) in R?, invar-
iant under the Lorentz group SO, (1,2) acting simultaneous-
ly on the two four-vectors x and y. We write x = (x',x;)
with x'= (xg,%,,x;), and also y=(),y;) with
Y = (Yo Y1: ¥2)- The vectors x’ and y’ are the components
of x and y orthogonal to the fixed momentum transfer Q. We
will further assume that x’ and y’ are spacelike.

Next we let
xX'=pu, p>0; ~—ug+ultui=1, (4.20a)
y=m, r>0, —vi4+v2+vi=1. (420b)

The invariance property of A(x,y) implies that A4(x, y)
depends only on p, 7, (#,0), X5, and y;:
A(x,y) =A[ p,r;(u,0);%3, y3] . (4.21)
For computing the explicit form of the product of two

Volterra kernels N and A, invariant under SO,(1,2), we use
the following coordinates:

x=(psinh§,0,pcoshéx;), p>0, (4.22a)
y=(00,7r,y), r>0, (4.22b)
z = ( p'sinh 7 cosh 4, p'sinh 7 sinh ¢,

p'coshr,2z5), p'>0. (4.22¢)

Now let us determine the limits of integration. Since
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x — zbelongs to Q, we have x, — 2y |x; — 23|, and therefore
x; — psinh £ + p’ sinh 7 cosh ¢

<Z;< X3+ psinh £ — p’ sinh 7 cosh ¢ . (4.23)
Similarly, from (z — y)efl we get
y3—p'sinh rcosh # <2z, < y; +p'sinh 7cosh ¥, (4.24)

and adding the inequalities (4.23) and (4.24) we obtain
(x5 +_Y3)/2 — ip sinh g
<Z3<(x3+y3)/2+4psinh . (4.25)

The determination of the limits of integration for p’, 7, and ¢
is similar to the forward scattering case. Indeed we have

N4 A[ p,ricosh &3, 331

o &7 ,
=2rdz J‘I‘ “ dp’
B ? f'l_’e——‘np P

xr drsinh 7 4 { p’,r;cosh 73x;, y5]
0
&7
x[ N[ p,p';cosh & cosh 7
(1]

— sinh £ sinh 7 cosh 9325, 5] da] , (4.26)

B, and 3, being the lower and upper bounds for z, given by
formula (4.25).

As in the forward scattering case we consider the partial
spherical Laplace transform of a Volterra kernel A with re-
spect to the angular variables

Z( Prr/l;xii,yS)
+ @« .
= [ A Uproosh Gxs, 7,10, [cosh £ 1 simh £ ¢
0
(4.27)

with

®,[cosh§] =20, ,(cosh§),
where Q, denotes the Legendre function of the second kind.

Finally we obtain a partial diagonalization of the Bethe-
Salpeter equation as follows:

848 J. Math. Phys., Vol. 27, No. 3, March 1886

A(prAxs, y3)
= B(p,riAiXs, y3)

+ w

+ o
+ dz, J; P dp’ N( pp'iAixs, z3)

—

X A(p'rA; 23, p5) . (4.28)

Remark: As observed by Banarjee et al.!* and by Nus-
sinov and Rosner,” the Bethe-Salpeter equation can be
further diagonalized, if the equation remains invariant under
dilatation. To this purpose we perform a Mellin transform
involving the radial variables p, p’, and r. Recall that this
dilatation invariance holds true in the limit of zero mass for
the internal particles.?
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It is known that there is a close relationship between the theories of scattering and orthogonal
polynomials. Here variational principles analogous to those of scattering theory are shown to hold
for problems involving difference equations such as those for orthogonal polynomials. Some

applications are indicated.

I. INTRODUCTION

Previously,' we have seen an important relation
between scattering theory and the theory of orthogonal poly-
nomials. A theorem about one implies a theorem about the
other.

For some time variational principles have been known
for scattering theory.” Unfortunately, these tend to be
neither minima or maxima. Hence, their usefulness in ap-
proximation schemes is rather limited. However, we have
recently seen that such variational principles can yield exact
results for some quantities of interest. One suspects then that
there are variational principles for orthogonal polynomials.
This we demonstrate here. As application, we obtain an ex-
act result relating small changes in the spectral function to
small changes in the coefficients of the difference equations
satisfied by the polynomials.

Our program is (a) we summarize the basic facts of the
relation between orthogonal polynomials and scattering the-
ory; (b) a variational principle is obtained; and (c) an appli-
cation is made.

Closely related to the difference equations describing
orthogonal polynomials are the difference equations de-
scribing discrete scattering in one dimension. These are of
importance in applying the inverse scattering transform to
discrete problems—such as the Toda lattice. The variational
principles for discrete one-dimensional scattering can readi-
ly be found paralleling the approach in this article.

Il. SUMMARY

Here we collect known results’ which will be needed
later.

“In the theory of orthogonal polynomials, we are given
some nondecreasing function p(4) defined on the real axis.
We are to find polynomials ¥(4,n) such that (i) ¢(4,n) isa
polynomial of exact degree n and its leading coefficient is
positive; and (ii) the orthonormality relations hold, i.e.,

f AR (Am)dp(A) = E(myn) . M

It is then shown that the polynomials satisfy the three-
term recursion relation

a(n+ DyY(An+ 1) + b(m)yp(A,n) +a(n)yp(d,n —1)
=A¥(An), n=012,.... (2)
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[Here we have defined a(0)¥(A, — 1) to be zero.] From the
orthonormality relations, we readily obtain the explicit for-
mulas

b(n) =f APAmdo(A) , (3)

a(n+1)=f A AmPAn+ Ddod) . (4

The question we (almost) will address is what are the
relations between small changes in g, b, and p. (This will be
made more precise later.)

From the viewpoint of scattering theory we take Eq. (2)
for n»>0 with the boundary conditions a(0)¢(4, — 1) =0,

¥(4,0) =C=1/yf=, dp(A) as fundamental for the dis-
cussion of orthogonal polynomials. Further, we restrict at-
tention to the case when a( oo ) and ( 0 ) exist and the limits
are approached at least as fast as 1/n% [This is the situation
when the support of dp(A) is compact. ]

Some simplifications are possible (without loss of gener-
ality). Thus, we will take #() =0 and a(w0) =4. If
b( o0 ) #0, the spectrum obtained below is merely shifted by
b(w). If a(w)# 4, the continuous spectrum is merely
stretched by a factor 2a( « ).

Denote as “regular” those solutions of Eq. (2) with the
given initial conditions which for a fixed A are bounded as
n— oo . With the assumed conditions it is readily shown that
such solutions exist for all A such that

— 1<A<1. (5)
These solutions are conveniently described by z such that
A=}z+z7"]. (6)

The statement then is that the Jacobi matrix formed from the
a(n), b(n) has a continuous spectrum in the region defined
by Eq. (5), or alternatively for z lying on the unit circle
(z = ¢). In addition, there may be some discrete eigenval-
ues A, corresponding to square summable solutions of Eq.
(1). It has been shown that these eigenvalues are (i) real,
(ii) simple, (iii) finite in number, and (iv) lie outside or at
the edge of the continuum. (In z, they are real and within the
unit circle or atz = + 1.) These results imply that the p(A4)
used to form our orthogonal polynomials has only a finite
number of jumps outside the interval — 1<A<1 plus a con-
tinuous part in the interval.

Useful auxiliary solutions of Eq. (2) are defined for
|z|>1by
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limn—bao |¢+ —Z"|—>0
and for |z|<1 by

hmn—»ao I'/J— _z—nl —0.

Further, we use Eq. (2) to define f, (2) as
[i (@) =a(0)y (z,—1). [ f,(2) is called the Jost func-
tion since it plays the same role as the function of that name
in scattering theory. ]

Some needed properties are (i) on the unit circle

[#

¢+(z,n) = ¢t (z,n) = ¢—(Z_l:n);
(i) YM,n)=(C/isin8)

X [f_@)¢ (zn) — f (2D¢_(z,n)],

for z = €,

(iii) in particular, the asymptotic behavior as n — « is
Y(A,m)—[2C| £, (2)|/sin 8 ] sin(n6 + 7), where

7(6) = —argf, (2); N

and (iv) the zeros of /, (z) in the unit circle determine the
discrete eigenvalues.

It is clear that /., plays a fundamental role in the theory
of orthogonal polynomials. From its definition, f, depends
only on the coefficients a(#n),b(n). The principal applica-
tion of the variational principle we will develop will be to

elucidate this.
First, we will need a representation for £, .

Iil. A REPRESENTATIONFOR 7,

This follows from the following properties of £, (2).

(i) On the unit circle S = €*" = f, (1/2)/ f, (2).

(ii) £, (2) is analytic within the unit circle except for a
simple pole at z = 0 where the residue is

1 2 1
R=——II . 8
2 =y 2a(n) ®)

(iii) There are at most a finite number of simple zeros of
[ within the unit circle. These are at real points z,.
These then imply that

I'(z) N
fola) =%e H(l—zi), )
i=1 i
where
—2z) -
7 = EH1 (1/i_ 2y 11 =8

(11
and c is the unit circle. [The argument leading to Eq. (9) is
essentially one previously given.? The only difference is that
here f, has a simple pole at z = 0 with known residue. Pre-
viously, the function P(z) had no pole but the value of P(0)
was known. ]

IV. A QUESTION

We now can ask what are the first-order changes in /.,
when we consider small changes 8a(n), §b(n) in the coeffi-
cients.
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From the integral representation of Eq. (9) we see we
need SR /8a,5R /5b, bz,/8a,62,/5b, and 59/6a, 57/5b. The
first two of these variations follow trivially from the explicit
expression of Eq. (8). Indeed,

SR - _ R ’ (12)
Sa(n) a(n)
and
SR
= 13
b(n) (13

The functional derivatives 8z,/8a and 6z,/5b can be ob-
tained by a simple argument which then suggests how to find
67j/6a and 87/6b. Note that

Ar=(z; +27")/2
is a discrete eigenvalue. Therefore,
A Y(An) =a(n+ DY(d,n + 1) + b(n)P(4,,n)

+a(n)y(A,,n—1). (15)

Multiplying by #(4,,n) and summing over all », gives the
expmssion

[ZZa(n + DY) p(An + 1)
+ Eb(rz)r/fz(/i,,n)][z z/!’(zl,m)]

Now regard this as a functional A (). Consider variations of
this 4 in the vicinity of Yy=v(4,,n). (Here we imagine the
a,b held fixed.) Then, in virtue of Eq. (15),

[z

8¢ lv=wdom
This, of course, is merely a discrete form of the Rayleigh—
Ritz principle. In the usual quantum mechanical applica-
tion—to obtain approximations to the eigenvalues—we
most often consider the lowest eigenvalue and make use of
the minimum property to improve accuracy. However,
while not necessarily a maximum or a minimum, the func-
tional is stationary at each eigenvalue.

Let us now use Eq. (16) to compute the changein 4, due
to small changes in a(n), b(n). Since we have demonstrated
the stationary property, we need only calculate the change in
A; due to the changes where a and b occur explicitly. Thus,

8, 29(Aum)P(dan — 1)

(14)

(16)

=0. a7

= 18
da(n) 3, P U,m) (182)
and
O, YA 4n)
18b
8b(n) z P(A,m) (180)
From Eq. (14) we see 84; = }(1 — 1/23)8z,,
82( 2 2¢(/lun)¢(/1nn —1)
= 19
ba(n) (1 —zi") 3, ¥*(4,,m) (192)
and
621 _ 2 'ﬁz(/ll!n)
8b(n) (1 —z,-"z) 3, *(A,m) (150)

This derivation suggests how we may calculate the func-
tional derivatives 67/8a(n) and 6%/6b(n). If we can con-
struct a functional for 7, which is a stationary problem, then
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the functional derivatives can be computed using only the
explicit changes in a(n) and b(n). We turn to the construc-
tion of such a variational principle.

V. THE VARIATIONAL PRINCIPLE

Let us construct an integral form of the difference equa-
tion. From this several expressions for the phase shift will be
given. Combining these will give the variational principle.

Rewrite Eq. (2) in the form

i{'ﬁ(’lyn + 1) + 1/’(/{,'1 - 1)} —A'ﬁ(iyn) = 7’('1) ’

(20)
where
y(n)= —la(n+1) —41¥A,n+1)
— la(n) —31¥(4,n — 1)
—b(n)y(4,n) . (21)
The homogeneous form of Eq. (20),
Hito(An + 1) + ¢o(4,n — D} — Agh(4,n) =0,  (22)
has as a solution vanishing at n = — 1
YPUAn) =2t -z~ "+ D=2isin(n + 1)8. (23)
A second solution of Eq. (22) is
D(An) =g+ 4 2= +D (24)
Then, ¥§" and ¥{* are linearly independent since
W [467.46°] = 46" (An + DY (Am)
— ¥ (An + DY
=2(z—2z"1H#£0. 25)
A Green’s function satisfying
HGA,m + 1;n) + G(A,m — 1;n)} — AG(A,m;n)
=6(m,n)
is then readily constructed as
Gmm) = — él)(,l,n)gp(‘i’l(/i,m) . m>n,
z—z
¥~ (Am) Y5 (A,m) (26)
- z—z"1 ’ ’

An “integral equation” for the scattering problem in-
corporating both the boundary condition and the difference
equation is then

Y(4,n) =9 (4,n) + 3 G(A,m;n)y(m) . (27
As n — oo, we then see that
P(An) >zt —ZFD L B+ 4200, (28)
with

E= —;_;z_rz Y50 (A,m)y(m) . (29)

The phase shift 7 is defined so that

Y(A,n) ~ Dsin(n@+7n)=Dsin[(n+ 1)9+'7)] .
(30)
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Since Z*'—z " “*+*V =2isin(n+1)§ and z**!
+2z7"*P =2cos(n+1)6, we see on comparing Egs.
(28) and (30) that D cos = 2i, D sin » = 2E, and, there-
fore, '

- 2E 5 (A,m)y(m) K

ta = —= = . 31
T T2 Zsme 25in 0 G

An alternative expression is readily obtained. Let
J=3Y y(myd,n) =3 G(Amn)y(m)y(n) . (32)
But for the solution of our problem

Y G(A,mn)y(m) = $(A,n) — ¥V (4,n),

S JI=Y y(m)Y§P(A,n) =2sin G tan 7,
ie.,

tan 7 =J /(2 sin 6) (33)

is another expression.
Combining the two expression of Eq. (31) and (33), we
also have*

tany = [1/(2sin ) 1K 2/J . (34)

It is now maintained that this expression as a functional
of ¢ is stationary when the ¢ satisfying the integral equation
is used. Thus, consider variations in ¥ keeping a(n), b(n)
fixed. We have

Stan g = [1/(2sin 0) 1{26K — 5K},

since when ¢ is the correct solution K = J. One has
8K =3, ¢§V (4,m)8y(m) with

sy(m) = =3 {la(m +1) — {16¢(4,m + 1)

+ la(m) — L16¢(A,m — 1)

+ b(m)syp(A,m)}, (35)

and
&) =3 Sy(m)g(A,n) + 3 y(n)6yp(A,n)
= > r(m)G(A,m;n)8y(m)

=Y &y (n)G(A,m;n)y(m) .

But

; y(n)G(A,m;n)8y(m)

= ; r(m)G(A,n;m)8y(n)

=2 [¥m) — 5" Am |8y (m) ,
SL8T =23 Sy(mYs (An)

+ ¥ y(m)d¢(A,n) — Y $(A,n)6y(n) .
(36)
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Inserting Eq. (35) for ¥(n) and doing some relabeling, we
find the last two terms on the right just cancel,

587 =2F Sy(mysd (An) = 26K, (37

and so & tan 7 = 0 as claimed.

We have shown tan 7 is stationary with respect to small
variations in the wave functions. Hence, to calculate changes
due to small changes in a(n), b(n), we merely need to look
at the explicit changes in our variational expression.

As before

Stany = L

2sin 6
oK = Z Y§P (A,n)éy(n),

{28K — &},

where now
Sy(m) = —éba(n+ Y(A,n+ 1) —da(n)y(A,n—1)
_5b(n)¢(ﬂsn) ’

87 =Y Sy(m)p(d,n) — Y G(A,m;n)8y(m)y(n)
= G(A,mn)y(m)dy(n) .
Since
S G(A,mn)y(m) = (A.n) = ¢ (4,n) ,

87 =3 ¢§°(4,m)8y(n) — ¥ G(A,m;n)8y(m)y(n) ,

we have
Y G(A,m;n)6y(m)y(n) = Y G(A,n;m)y(m)Sy(n)
= z '/J(ﬂ-,n) - ¢(()1)(/{9n) )

S 8T =2 YV (A,n)dy(n) — 3 ¥(A,n)8y(n).

Hence,
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Stanf= ———— 3 YAmSr(n), (38)

and then
Stan 7y 1
= - /1’ A, - ’
Ba(n) Tein @ Y(An)Y(A,n—1) 39)
Stang 1
s~ Zsme? A (40)
VI. CONCLUSION

It has been demonstrated that the difference equations
describing orthogonal polynomials have variational princi-
ples completely analogous to those occurring in the theory of
scattering by potentials. These are principles for the eigen-
values and phase shifts.

As an application, it has been seen how the functional
derivatives of the Jost function for discrete problems can be
found via the variational principles.

It may be mentioned that there are other problems in-
volving difference equations which are closely related to
those discussed here. For example, in applying the inverse
scattering methods to discrete problems—such as the Toda
lattice—one is interested in difference equations like Eq.
(2), but for — w0 <n< 0. Then the primary quantities of
interest are the reflection and transmission coefficients.
Variational principles for these are readily obtained. These
are straightforwardly obtained discrete forms of the princi-
ples discussed in Ref. 5. From these the functional deriva-
tives of the reflection and transmission functions with re-
spect to the coefficients in the difference equations are easily
found.
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Dirac spinors for vector space-times R ** are considered as real spinors of appropriate extended
vector spaces R **'. This extension is determined by the condition R, ,. =R ;. The catalog of
reality, chirality conditions allowed for Dirac spinors by the analysis of corresponding Clifford

algebras and their left minimal ideals are completed.

I. INTRODUCTION

In supersymmetric field theories, as well as in some uni-
fied theories of gravitation and gauge interactions, we are
specially interested in various space-time dimensions. The
fundamental problem for all such theories is an analysis of
the kind of spinors that can be defined in the n-dimensional
space-time of the signature (s,¢); s + ¢ = n.

In this article we will investigate algebraic properties of
spinors and their consequences on the possible physical the-
ories. In some sense we shall follow in the spirit of the articles
in Refs. 1-3, however, some of our conclusions will be differ-
ent.

In supersymmetric field theories we have to deal with
different kinds of division algebras and for some space-time,
appropriate spinor spaces are also modules over some divi-
sion algebras. Hence the idea arises to link the properties of
supersymmetric field theories in various space-time dimen-
sions with the properties of spinors. ‘

Although this idea has been used previously in the liter-
ature! the conclusion arrived at is doubtful. First, the associ-
ation of the given space-time with one of the division alge-
bras R,C, or H does not lead us to the conclusion that there is
some relationship between the dimension » (or “transverse”
dimension » — 2) and division algebra. Also we cannot anti-
cipate the further association n = 10 with the algebra of oc-
tonions O. The known relation between Spin(7) CSO(8) and
the subgroup of GL (0) generated by right multiplication
by unit octonions, which are purely imaginary, has a com-
pletely different origin. It comes from the fact that every
linear transformation of R & can be written® as a sum of eight
transformations of the form x — (ax})b, where the product is
‘taken from the algebra of octonions. The similar situation is
met in the four-dimensional case. Then every linear transfor-
mation of R * can be written as a sum of four transformations
of the form x — axb with the product from the quaternion
algebra H. It implies that the Spin (4} group is given by
x — pxq~ 1, where p and ¢ are pure imaginary unit quater-
nions.

In this paper we shall consider spinors as elements of the
left minimal ideals of the corresponding Clifford algebra.
However, if we start with some vector space-time R ** then
the left minimal ideals % (s,¢) of its Clifford algebra R, , are
modules over R, C, or H, respectively, depending on the con-
crete signature (s,¢). Unfortunately, for even (s + ¢ = 2r)-
dimensional vector space-time R *', spinor spaces are over R
or H. For these reasons we construct Dirac spinors as ele-
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ments of a left minimal ideal of the complexified Clifford
algebra R C,. However R &, is isomorphic to the universal
Clifford algebra C, of the complexified vector space-time
(R **)€ = C". Thus we see that C, does not reflect the alge-
braic properties of the appropriate Clifford algebra prior to
the complexification. In other words we lose the algebraic
properties of R, , related to concrete signature (s,z). Some-
times we may rediscover the relation between the starting
vector space-time and one of the division algebras R, C, or H
but only when using isomorphism between Spin (s,¢) group
and one of the classical groups.

In this paper we proceed in a slightly different way.
Namely we embed the vector space R * into the correspond-
ing vector space R **' (where2r =s + t =s' + t' — 1)deter-
mined by the condition R $, =R, .. The advantages of such
an approach are the following.

(a) So defined Dirac spinor space inherits the symme-
tries determimed by scalar products induced by anti-involu-
tions of real Clifford algebras. :

{b) The above symmetries are closely related to the sym-
metries of maximal supergravities in higher-dimensional
space-times. It suggests that we should work with real Clif-
ford algebra approach.?

(c) We obtain a precise interdependence between a di-
mension and signature of any space-time R ** on the one side
and the division algebras related to pinor and spinor mo-
dules of R, , on the other.’

However, if we take into account the Ogievetsky and
Sokatchev construction of the supergravity potential by
means of complex space-time coordinates then we should
consider also the complexified Chevalley approach.

Il. GENERAL CONSIDERATION

Let R* be an (m = s + t}-dimensional vector space-
time with the space dimension s and the time dimension ¢.
Let us denote by R, its corresponding universal Clifford
algebra (CA). It is known® that any CA R,, can be realized
by its matrix representation. It exhibits the character of R,
as the real algebra of endomorphisms of a right F-linear
space S(s,t )=, i.e.,

R, «»End;~. 2.1)
Here F is an appropriate ring uniquely related with a given
CAR,,. A space & is called the “real” spinor space of the

orthogonal vector space R *. Thus we treat the spinors as
elements of the underlying vector space of the faithful matrix
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representation of the CA R, ,. This underlying vector space
can be given by an minimal left ideal of R, ,:

Hls,t)=R,, f. (2.2)
Here fis a primitive idempotent f? = fof R, ,, which unique-
ly determines .# (s,¢). Sometimes, the left minimal ideal .
as a right F-module is called a pinor module,® whereas one
introduces also the notion of spinor module 3=X(s,t) as a
left minimal ideal of the even subalgebra R (9 ofthe CAR,,.
The first to introduce spinors as elements of a left minimal
ideal of corresponding CA was Sauter.’

Although for a fixed dimension n = s + ¢ the geometric
properties of a given CA R, depend on the concrete signa-
ture, we have only a few possibilities for their algebraic types.
Namely, for n = s + t = 2r, CA R, can be realized only as
the algebra of 27X 2" real matrices R(2") or as the algebra
H(2"~ 1) of 27~ % 2"~ ! matrices with quaternionic entries.
Fornodd,i.e.,n =2r+ 1, CAR,, can be only in one of the
following algebraic types:

IR(2), C(2), ZH(E2 Y. (2.3)
Moreover, because we have algebraic isomorphisms between
RO=R,, ,, fort>1,
and (2-4)
RO'=R,, ,, fors>1,

we see that we can obtain a link between a given space-time
R ', but only one of the division algebras R, C, or H. Thus
the suggestion’ that octonion algebra could come naturally
to our spinor analysis when we increase the dimension of
space-time is not true.

Any space . (s,2) is the underlying space not only for
the faithful representation of the corresponding CA R, ,, but
among others also for Spin(s,t) group and for the group G .
determined by scalar products on % (s,t). The former group
is related with the symmetry of the whole physical theory
based on a given space-time R ** whereas the latter groups
are related” with symmetries of maximal supergravities in
dimension n.

In the physical theories one of the most fundamental
equations is the Dirac equation

(i8+m)yp=0, §=y%d,. 2.5)
Here y# are the complex matrices that satisfy the relations

[J—V= v ’V=' " e — a8 —
{yryy =29, 9 dlag(++s + ),

t
and ¢ is a sufficiently differentiable function from R ** to a
"-dimensional complex vector space equipped with Spin(s,? )
symmetry.

We see that only in the case when R, , has C(2) realiza-
tion, matrices 7, generate CA R,, and ¢ can be taken as a
function from R ** to #(s,t).

Although in the case when CA has its matrix represen-
tation with the quaternionic entries, we can still believe that
(by means of the well-known realization of the quaternions
in terms of Pauli matrices) we are able to preserve the valid-
ity of (2.5); it is obvious that this is completely impossible
when the algebraic type of R, is given by R(27).

The main obstruction against the validity of Dirac equa-
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tion (2.5) in terms of the geometric objects related to R *' is
the presence of the imaginary unit i. For this reason in the
relativistic quantum mechanics we have to pass either to the
complexified space-time (R *)€ or to a one-dimensional ex-
tension R *! of our space-time R *!. In both cases we intro-
duce the imaginary unit / to appropriate Clifford algebras as
well as to related spinor spaces. Of course it is in contradic-
tion with Dirac’s original intension of factoring the wave
operator in four-dimensional real space-time.

We can consider the just mentioned two possibilities be-
cause the algebraic types of R§, and R, are the same and
are given by the full matrix algebras C(4). Let us return to the
Dirac mass equation (2.5). By construction it can be satisfied
only in the case when y,, matrices have complex entries as
well as when the field ¢ has complex components. Such a
complex matrix representation of the generators 7, of an
appropriate Clifford algebra will be called the Dirac algebra
and related with its spinor space will be called the Dirac
space. However, for even-dimensional vector space R ' we
can never obtain the dirac algebra as its Clifford algebra. The
simplest way is to pass to the complexified picture. But in
this case we lost the dependence on the concrete signature
(s,2) and we lost the natural possibility of aditional symme-
tries of Dirac spinor spaces related with scalar products; be-
sides, we have to introduce more than one additional real
dimension. For this reason it seems to be more natural and
convenient to pass to the only one-dimensional extended
vector space R "+ . We can do this by considering our start-
ing vector space R* as a subspace of an appropriate
{n + 1)-dimensional vector space formed by deleting from
the canonical basis (eg,e,, . . . ,e") for R "+ a vector e,

The additional dimension e, is timelike or spacelike de-
pending on the signature (s,? ).

Our aim is to pass to such a bigger vector space whose
corresponding Clifford algebra is algebraiclly isomorphic to
the complexified CA of the starting orthogonal space R /,

Rs*—>R s,
! ¢
R, >R, =:D,,.
U
N
RS,

(2.6)

Heres+t=s +t¢t'— 1.

We shall denote a left minimal ideal of R, (i.e., a “real”
spinor space) by & = % (s,t); a left minimal ideal of R (¥’
(i.e., a space of “even” spinors) by = = 3(s,t) and a left
minimal ideal of D, ,: = R, ,. (i.e., a space of Dirac spinors)
by ¥ = W(s,t).

As we have told for even-dimensional vector space-time
R*, 5+t =2r, we have two algebraic types of universal
Clifford algebras:

(I)R,,=R(2") and (II) R, =H(2"""). 2.7
It appears that for each of these cases we have to consider
two possibilities: with additional spacelike dimension, and
with additional timelike dimension. This space- or timelike
character of the extension of R **to R **" depends on the
concrete signature (s,?).

For odd-dimensional vector space-time R, s+ ¢
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= 2r + 1, we have that either R,, is realized as a matrix
algebra with complex entries, i.e., G(27), or as a matrix alge-
bra over some, the so-called double field. Thus in the former
case we have just what we need, whereas in the latter cases
our Clifford algebras do not possess “one generator’s” exten-
sion having the complex matrix realization. Hence in these
cases all we can do is to pass to the complexification C" of a

starting vector space R ** itself.

Ili. DIRAC, WEYL, AND MAJORANA SPINORS

Let R* be an even-dimensional orthogonal vector
space. Let R***', s’ + t' = s + t + 1 be a vector space whose
corresponding universal Clifford algebra R, ,. is algebraical-
ly isomorphic to R £,. As we have told, a Dirac spinor space
¥ (s,t) is (by definition) formed by a minimal left ideal of
R, ie,¥(st) =7 (s't').

Now the additional dimension e, allows us to construct
the projective operators W according to the formula

W, =11+ ne). (3.1)

It is easy to see that W2 =W _ ifp=1fore; = + 1and
n=iwhene} = — 1.

We shall call operators W, Weyl operators. They de-
compose the Dirac 2" complex-dimensional space ¥ onto
two Weyl subspaces W, and W _, respectively. Although the
space V¥ is equipped with higher symmetries G, and G_ the
operators W, break them and subspaces ¥, and W _ in-
herit only appropriate Spin(s,t ) symmetry.

Let {e,,....e, , , } form an orthogonal basis for the corre-
sponding vector space R **. Let us denote their product by
ey, ie.,

(3.2)

Because the product ese; plays the role of a pure imaginary
unitin CA R,.,. = D,, for any {s,¢), the Weyl operators can
be written

W, =1(1F7e)

eJ = ele2"'es+ t

(3.3)

TABLE I. Relations between Clifford algebras.

(ie, =e,forey = — landie; = —eyforel = + 1). Itcan
be checked that for s — ¢ = 2, 6 mod 8 the additional dimen-
sion e, has to be a space-line, i.e., €5 = + 1. We shall denote
these cases by A (see Table I). Although the algebraic type of
R,, for s — t =2 mod 8 is given by R(2") algebra, and for
s — t = 6 mod 8 is given by H(2"~ ) algebra, their even Clif-
ford subalgebras are isomorphic. They are realized as the
matrix algebra C(2"~!'). Namely for s — ¢ = 6 mod 8 we have
t —s =2 mod 8. Hence the known isomorphism

0 0
RQ=RT

tells us that the Clifford algebras to type A have algebraically
equivalent even subalgebras.

Moreover, the product e; given by (3.2) plays the role
of the pure imaginary unit in these even Clifford algebras.
Thus we obtain the vector space isomorphism between the
Weyl subspaces ¥, and even spinor space Z, respectively.
Moreover we always have a vector space isomorphism
between the Weyl subspaces and the Dirac space of corre-
sponding lower-dimensional vector space R *~ '~ !, Hence
for s —t = 2,6 mod 8 we have

V, 3oV s—1—-t-1)=,_,

as vector spaces.

The situation will change when we have to enlarge our
starting vector space R* by a timelike dimension e,
e = —1togetR,,, =RE,. Then for both possible alge-
braic types of universal Clifford algebras, the even spinor
spaces are not isomorphic to the Weyl subspaces (see Table
I). For these cases the product e; of the basis elements of
corresponding generating vector space R ** has the property
€2 = + 1. It implies that the even Clifford subalgebras, and
hence their left modules, have to be over double fields. We
obtain that X, =’R(2"~7), for s—¢t=0mod 8 and 2,
=?H(2"~?), for s — t = 4 mod 8. Now let us return to the
general case of even-dimensional vector space-times. Let ¥,
denote the matrix representation of ¢, in the Dirac algebra
D, , =C(2"). It is known (by the Noether-Skolem theorem)

(3.4)

I

I

A Ry 2xC2Yoww S R, ,=C2 )mr F=C""
=1 \ef, =-1 ’&
R, xRQ2)wr Z2C? ' R, =H2 ~ Yo S=C? "
g=+1 et=+1
R, =C2)mr W, xC' Ry, =CR)mr W, =C¥ '
s—t=2mod8 s—t=6mod 8
B
R,_,,=C2 Ywr F=C R, ., =C2 Y £
= +1 €= +1
R, =R@2)m Ip=R""’ R, =H2 " 2’
&=—1 g=—1
R, 1 =C2)m ¥, =C¥" Ry, 1 =C2) e ¥, =C
s—t=0mod 8 s—t=4mod 8
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that any two matrix representations of R, , are related by the
similarity transformations. Thus we see immediately that if
R,, is algebraically equivalent to R(2), i.e., if it is of type I,
then we can find the representation of e, €R,,,
g = 1,...,5 + t by the real matrices 7. It implies that any
other representation ¥,, can be obtained as

V=6V A, =+1. (3.5)
Hence
vE=o Ay, A A" (3.6)

In other words for any matrix representation of the Dirac
algebra of type I we have

yt=By,B~}, (3.7)
with B = o ~'o7. It implies that
BB*=1. ' (3.8)

However, the relation (3.7) means that when we transform
the spinor space ¥ by means of an operator C, '

¥ ms Cip: = B ~ Y%, (3.9)
then elements e, are represented by the same matrices ¥,,.
We shall call C the charge conjugation operator, and ¢*
= Cy the charge conjugated spinor.
It is easy to see that C? = 1. The property allows us to
construct the projective Majorana operators

M, =1(1+C) (3.10)
which decompose the Dirac spinor space into two so-called
Majorana subspaces
Ye=4(1+C)Y¥,
(3.11)

¥, =4(1-C)¥.
Now we see that if a primitive idempotent f, which deter-
mines our Dirac spinor space ¥, is also a primitive one of the
Clifford algebra R, then B = id and the Majorana decom-
position is given as the decomposition onto real and pure
imaginary real subspaces of the Dirac space V. Namely, let

W=R,, f (3.12)
Now any primitive idempotent f can be written as
S=(/21 + @)1 + @), (3.13)

where {w,} is a set of square one pairwise commuting ele-
ments of R, ,.. Then number y is uniquely determined by the
signature (s',2’) (see Ref. 8). It can be checked that

xist) =x(s',t), (3.14)
for CA of type I. Hence we can fix a primitive idempotent of
corresponding Dirac algebra D,, = R, ,. as exactly the same
as of CA R, ,. Thus we obtain immediately the vector space
isomorphism between the Dirac spinor space ¥(s,¢ ) and the-
complexification #C(s,t) of the “real” spinor space #(s,?),
or equivalently we obtain that

W = F(s,t). (3.15)
However, we should notice that although the algebraic prop-
erties of the pure imaginary units in W(s,#) and ¥ (s,¢) are
the same, their geometric features are different. They behave
differently under the anti-involutions induced by identity
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and reflection transformation of the starting vector space.
This implies different symmetry properties of ¥(s,) and
F(s,t S, respectively.

Now we can ask the question of when Weyl spinors are
Majorana ones, i.e., when is the subspace M_, ¥ equal to the
subspace W W? This is the case when

Cy=7C, where¥=n¥y...%., (3.16)
but
C'};= 17*717:+IC
—7C, fors—t=2mod8,
= 17
{77C, fors — ¢t =0mod 8. (3.17)

Thus for s — r = 0 mod 8 Weyl operators are equivalent to
their complex conjugates.

Now let us consider the case when the universal Clifford
algebra R,, is realized by the matrix algebra with quater-
nionic entries, i.e., let us consider the algebraic type II. We
can check that for these Clifford algebras we have

xls't')=yls,t) + 1. (3.18)
Thus we see that ¥(s,t ) cannot be considered as a vector space
isomorphic to the complexification #€(s,z) of #(s,¢). The
elements e, € R * are represented by the complex matrices
Y. € D,,, which cannot be made real. However, ¥ matrices

also generate the same Clifford algebra R,,. Again by the
Noether-Skolem theorem we have

Y = €B “y;‘;ﬁ,

with§‘§=~:|;lande= + 1. N
Now let B *B = 1. Then we can factor B in the following

(3.19)

~way:
B=A*4"" (3.20)

This implies that
Ay d=ed* "'yt (3.21)

Thus if € = + 1, the ,,’s have their matrix representation
given by real matrices, i.e., we have the case of CA of type L.
If e= — 1, 7,’s have their matrix representation given by
pure imaginary matrices. We have the following lemma.

Lemma I: Let v, be a matrix representation of the uni-
versal Clifford algebra R,, with pure imaginary entries.
Then matrices iy, generate the universal CA R, ;.

Proof: Obvious.

We see that in the considered case matrices, iy, have to
be real. Because for s—t=2mod8 we have
t —s = 6 mod 8, we obtain that in the case II A we have
BB*=1and e = — 1. In other words for s — t = 6 mod 8
we can fix such a basis of the Dirac space ¥ in which the
elements e, are represented by pure imaginary matrices y,, .
In this basis

vE=—7, (3.22)
and the charge conjugation ¥° = Cy is given by

o =y*. (3.23)
In the general case we have that similar to (3.9)

Cy=y =B 'y* (3.29)

and Majorana operators
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M, =4(14£C). (3.25)

Example: Let the ,, be real 4 X 4 matrices that generate
R;, C R,,. Then pure imaginary matrices iy, € R, gen-
erate a subalgebra of R, ; isomorphic to R, ;. In other words
because we can construct Majorana spinors for the vector
space R >! (3 — 1 = 2) this is also possible for vector space-
time R * (1 — 3 = 6 — 8). Nevertheless in both cases (i.e.,
5 — t = 2,6 mod 8) Majorana spinors ¥ = ¢ cannot be giv-
en as Weyl spinors because the necessary conditions (3.16)
cannot be satisfied. _

Now let us consider the last possibility s — # = 4 mod 8,
i.e., the type II B. We see that in this case we are not able to
find a representation in which matrices y,, generating R,
are pure imaginary ones. If they were, then the CA R,
would be isomorphic to the algebra of real matrices. How-
ever, this is impossible because also  — s = 4 mod 8. Thusin
thiscase B*B = — 1 and we cannot factor B as previously in
Eq. (3.20). Of course we can introduce a charge conjugation
operator C by (3.24), but it does not allow us to construct
the Majorana operators. Although in this case we also can
take the decomposition of the Dirac spinor space ¥ onto its
real and pure imaginary part, but these subspaces will never
be invariant with respect to the Spin (s,¢) group. Besides
they are not underlying spaces for a faithful representation
of endomorphisms generated by 7,,. As a matter of fact the
case of signature s — ¢t = 4 mod 8 can be considered as hav-
ing the true quaternionic nature. Already we have seen that
then both algebraic (s,t) spinors (i.e., left minimal ideals of
R, ,) and even spinors (i.e., left minimal ideals of even subal-
gebra R Q) are right modules over the quaternionic ring.
Moreover we can see that owing to the property B*B=—1,
the Dirac spinor space ¥ possesses also a quaternionic struc-
ture. Let us take the Weyl decompostion of ¥ onto W . sub-
spaces. We can define an operator C by

5@j=(:f*w)
¥/ \B7'yt
where ¢, € ¥, and ¥, € ¥_. Now we have C? =1 and we

can look for spinors that satisfy the following generalized
Majorana condition

(3.26)

~ (¥ _ ¥

()-(%). o
We can write (3.27) as

¥, =€l Byt (3.27)
with

= %)

Because the relation (3.27') is preserved under the transfor-
mation of ¢, by the group SU(2), we have defined the multi-
plication of the Dirac space by quaternions [SU(2) is equiva-
lent to the group of unit quaternions].

IV. CONCLUSIONS

In this paper we treat spinors as elements of the univer-
sal Clifford algebra R,, generated by a vector space-time
R **, We have introduced Dirac spinor W (s,?) as “‘real”” spin-
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ors of an appropriate extended starting vector space. As a
matter of fact we have considered only the cases of even-
dimensional vector space-time s + ¢ = 2r because for odd-
dimensional vector spaces we can do nothing except com-
plexification.

An additional dimension e, allows us to construct the
product ege; = epe,...e,, ,, Which plays the role of a pure
imaginary unit i. Also, by means of e, we construct the Weyl
operators W, = 1(1 + 77¢,). Thus for any signature (s,?)
we can decompose the Dirac spinor space onto two sub-
spaces of Weyl spinors. For some signature (s,f) we can in-
troduce a charge conjugation operator C; ¢ = + 1. In these
cases we can decompose the Dirac spinor space ¥ (s,7) also
onto the so-called Majorana spinor subspaces.

For s — t = 0,2 mod 8, any primitive idempotent of the
Clifford algebra R, is also a primitive one of the Dirac alge-
braD,, = R, , . Hence we can fix such a base of Dirac spinor
space ¥ in which charge conjugation means only complex
conjugation, i.e., ¥° = ¢*. In other words in these cases just
S(s,t) forms the Majorana spinor space ¥, =1(1 4 C)V.
Moreover in this base the elements ¢, € R Spu=1..5+t
are represented by real matrices y,, € D,,. Of couse matrices
{iv, } also belong to the Dirac algebra D, ,. However in the
case of s — t = 0 mod 8, they generate a subalgebra of D, ,,
which is isomorphic to the starting Clifford algebra itself.
Fors — t =2 mod 8, {iy, } generate a subalgebra that is iso-
morphic to R,;; t—s=6mod8  Hence for
s —t=0mod 8, Majorana spinors can be taken also as
Weyl spinors, whereas for s — # = 2 mod 8 it is impossible.
Nevertheless this fact implies that elements e, € R*,
s — t =6 mod 8 can be represented by pure imaginary ma-
trices ,, in the Dirac algebra D, ,. Hence we can introduce a
charge conjugation operator C, C? = 1, as well as Majorana
spinors also for a vector space-time of signature
s —t =6 mod 8. For s — z = 4 mod 8, matrices y,, € D,, as
well as matrices i ¥, € D;, create isomorphic subalgebras of
D, ,, which are algebraically equivalent to the Clifford alge-
braR,,. Thusin this case either y,, or iy, matrices cannot be
given as real matrices. Moreover although ¥ matrices gen-
erate also the R, subalgebra of D, we have in this case 7}
=e€B "'y, BwithB*B = — 1. Hencein this case we can not
construct an operation of charge conjugation with property
C? = 1. It means that we cannot fix any subspace of the
Dirac space ¥ as the Majorana spinor space. Nevertheless
we can use the Weyl decomposition (which always exists)
and introduce the so-called SU(2) charge conjugation. This
fact together with the quaternionic of the “real” spinor mod-
ule #(s,t) and of the “even” spinor module reflects the
“true” quaternionic nature of spinors for signature
s —t=4mod 8.
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The reduction of irreducible representations of the superalgebra spl(1,2) to the subsuperalgebra
osp(1,2) is given explicitly. The oscillator representations are discussed in detail and their
relevance for nuclear physics is outlined by a simple model containing three ground-state nuclei.
The results have important implications on a recently suggested mechanism for the symmetry

breaking of spl(6,2m) via osp(6,2m).

I. INTRODUCTION
A. Foreword

While considering a well-defined problem of nuclear
physics we realized the necessity of a simple model in the
framework of which all calculations can be carried out expli-
citly. Such a model is presented in this paper where we sepa-
rate two aspects, namely the mathematical one and the phys-
ical one.

In the mathematical part (Secs. II and IIT) we describe
the reduction of the superalgebra spl(1,2) to its subalgebra
osp( 1,2) explicitly in terms of generators, irreducible repre-
sentations, and ordinary oscillator representations. This
part can be read clearly without the rest and its scope is, of
course, more general than needed for the physical applica-
tion.

In the physical part we discuss the implications for nu-
clear physics. Here the reader always should keep in mind
that our simple model has been constructed in order to facili-
tate a well-founded understanding of the analogous, but
much more complex, structure in realistic models.

B. Physical motivation

Since its introduction by Arima and Iachello’ in the
mid-1970’s the interacting boson approximation (IBA) for
the collective excitations of even—even nuclei has been well
established from the theoretical as well as from the experi-
mental point of view.>>

The generalization to odd—even nuclei consequently
lead to the so-called interacting boson fermion approxima-
tion* (IBFA) and, in a further step, to boson fermion super-
symmetries>~ (SUSY).

In the last case, one starts with the supergroup U(6/
2m), where the 6 stems from the bosonic degrees of freedom
(one s-boson and one d-boson) and 2m reflects the fermionic
degrees of freedom. For realistic applications, 2m is at least
of the order of 10 which obviously leads to a huge number of

possible group chains for the desired dynamic symmetry

breaking. Since presently a microscopic theory of nuclear
SUSY is missing, the relevance of the several chains can be
tested only phenomenologically.

In what follows, we use the terminology of Lie superal-
gebras, and write spl(n,m) for the algebra that belongs to
U(n/m).
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Apart from the standard route, breaking SUSY in the
first step by going to the maximal Lie subalgebra, one can
keep SUSY for one or more further steps by first going to a
Lie subsuperalgebra.

For several reasons—two of them being the importance
of the 0(6) limit in the IBA and of the concept of seniority in
both even—even and odd—even nuclei—it looks very promis-
ing to introduce the Lie superalgebra osp(6,2m) with its
subalgebra o(6) Xsp(2m), i.e., to consider the chain

spl(6,2m) D osp(6,2m) D o(6) Xsp(2m) D . (L.1)

This has been suggested recently by Morrison and Jarvis.®

Asis well known,* ! the rep theory of Lie superalgebras
shows some pathological properties, unknown from the the-
ory of ordinary Lie algebras, which may cause problems for
physical applications. Especially for the chain (1.1), the Ha-
miltonian turns out to be non-Hermitian and the reduction
spl(6,2m) losp(6,2m) produces a mixture of different boson
and fermion numbers equivalent to a mixture of different
nuclei.

In order to make the whole structure transparent, one
needs a simple model, in the framework of which one can
calculate each step explicitly. Such a model is presented in
this paper while a discussion of (1.1) and other realistic
chains is deferred to a forthcoming publication.

The necessity to simplify the physical structure is ob-
vious since reps of, let us say, spl(6,12) are too large to be
dealt with explicitly. Omitting the bosonic degrees of free-
dom normally attached to the d-boson, i.e., keeping only the
s-boson, one arrives at spl(1,2m ) with 2m fermionic degrees
of freedom. In this paper, we will consider the case m = 1,
i.e., spl(1,2), since the pathologic properties already arise in
this simple example. To see this one has to consider the two
chains

(i) spl(1,2) D osp(1,2) D sl(2),
(1.2)
(i) spl(1,2) D gl(1)xsl(2).

In this model, a nucleus is defined as the set of all irredu-
cible s1(2) multiplets belonging to the same numbers Ny and
N of bosons and fermions, respectively. Since we have sole-
ly an s-boson we can only describe ground states, i.e., a nu-
cleus is a single s1(2) multiplet.
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Clearly, from what has been said above, we need an os-
cillator rep of spl(1,2) containing one boson s and two fer-
mions ¢ and b, the reduction of which then yields the whole
structure of our simple model.

C. Survey of contents

After this long discussion of motivation we can now de-
scribe how the paper is organized and give some of the main
results.

Sections II and III are devoted to the mathematical
structure. As the explicit reduction of spl(1,2) reps to
osp(1,2) is an interesting problem in itself and a direct pur-
suit of Ref. 9, we do this job first in Sec. II.

Then, in Sec. III, we present the oscillator reps of
spl(1,2) and its decomposition. Although for the physical
application only the rep with one boson and two fermions
(Sec. 111 B) is needed, we shortly present, for the sake of
completeness, the oscillator rep built of one fermion and two
bosons (Sec. IIT A). In both cases the reduction to osp(1,2)
is given. Through this reduction, a non-Hermiticity occurs
in one case for the quadratic Casimir operator of osp(1,2),
which turns out to be not even a normal operator with all the
consequences like state mixing and change of metric. This is
discussed in detail in Secs. III C and III D,

Last but not least, in Sec. IV, we consider the physical
implications of the preceding sections. First, we discuss the
direct consequences of the non-Hermiticity that arose in Sec.
IIT C. Then, in Sec. IV B, we consider the relevance of dy-
namic symmetry breaking via osp(1,2) by inverse analysis.
There we obtain the remarkable result that with the ansatz of
a Hermitian sl(2)-invariant Hamiltonian—from which one
surely would have started if one had not known anything
about SUSY—it is impossible to establish a true osp(1,2)
supersymmetry.

Normally, a simplified ansatz for the Hamiltonian con-
sists of a sum of linear and quadratic Casimir operators that
is motivated—but not justified—by a special property of
IBA, namely that this ansatz yields the most general Hamil-
tonian quartic in the creation and annihilation operators,
except for one term that is the product of two linear Casimir
operators.*!? For this type of ansatz, dynamic symmetry
then simply means that one only has to take the Casimir
operators of a suitably chosen chain of subalgebras.

In general, one cannot expect the same property and,
indeed, in our simple model already several terms exist that
are linearly independent of the Casimir operators. Perhaps
the most striking example is a transition operator between
two nuclei belonging to the same supermultiplet.

Il. REDUCTION OF spi(1,2) TO osp(1,2)

To give an explicit reduction of the irreps of spl(1,2) to
those of osp(1,2) we will use the results of Scheunert et al.®
The even generators of spl(1,2) are Q,, (m = 1,2,3) and B,
the odd ones are V', and W, . The commutation relations
of the algebra read
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(020, ]1=£0Q,., [2..0_1=20,

[B.Q.]=I[BQ]=0, [BV. ]=4V,,

(BW.]1=—4W., [Q..V,.]1=[Qs.W.]=0,

[@V.]=£4V., [GW, . ]=LiW,, (2.1)

(. V1=V, [ W]=W,,

{V:t Vs }= {V:I: Ve }= {W:t Wy}
={w, . Ww.}l=0,

Wy Wor=+0,, (VoW l=-0,+8

where

Qi = Ql + iQZ'

The generators of the osp(1,2) algebra are Q,,
(m=123) and V,,,,, satisfying the commutation rela-
tions

[Q3’Qj; ] =% Q:t s [Q+:Q—] = 2Q3,
[Q:t ’V;t 1/2] =0, [Q3’V;tl/2] = ﬂ:ﬁVil/z,

[Q:t ’qu 1/2] =V

ViwnmVinl=+10,, ¥, vV xin}t= —10,
We will use the notation of Ref. 9 with the following modifi-
cations: In order to distinguish between the ( + ¢,4) rep and
the (5,9) |5~ ., rep of spl(1,2) we will label the first one by
[ + ¢,9] and the second one by ( + ¢,q). We label the odd
generators of osp(1,2) by ¥, instead of ¥, and we will
choose V%, ,,, = F¥,, instead of V3, , = £ V0,
where { denotes the grade adjoint operation.

The irreps of the algebra osp(1,2) are labeled by a half-
integer ¢. For ¢ > 4, such a rep contains two s1(2) multiplets
with isospin g and g — }, respectively (for the notation, cf.
Ref. 9 or the Appendix). The dimension therefore is 4g + 1.
The generators of the osp(1,2) algebra in the g rep can be
written in matrix notation,

D9wWQ) | 0
Qk= 0 —]D(q_l/z)(Qk) ’

(2.2)

2.3)
b )
+1/72 — 7 i 114 (:g) 0 )
where
R \
29 — 1 0
AW = . ,
5
0 0
0 0 (2.4)
i \
aw=| 2 ° :
0 V=1 /
V2q
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and D ‘9 (Q, ) is the usual matrix rep of s1(2) of dimension
29+ 1.

The irreps of the algebra spl(1,2) have been systemati-
cally constructed.® The different reps as well as the different
possibilities (one has to normalize the states relative to each
other) are characterized by constants a, 3, 7, 6, €, §, 7, and
. In order really to define a rep these constants have to
fulfill a system of nonlinear equations. For the sake of com-
pleteness, we list the most important relations in the Appen-
dix.

To come now to an explicit reduction of spl(1,2) reps to
osp(1,2) reps we first consider the [ + ¢,q] reps of spl(1,2).
Here and in what follows we exclude the case g = O since this
gives the trivial representation.

Before we can directly compare the rep matrices we
have to localize the subalgebra osp(1,2) in terms of spl(1,2)
generators. Since the s1(2) part, given by the generators Q,,
1 < k < 3, is the same for both algebras, we only have to
express V' ,,, by the odd generators of spl(1,2). One finds

Vi =3V, +W,.), (2.5)
which can directly be verified by the commutation relations.

Choosing @ =1 ( 8= 1) for the [g,9] ([ — ¢,9]) rep-
resentation, one obtains

D ‘(Qy) 0
O = (g—1/2) ’
0 D' (o

(2.6)
1 1 0 A(;)
7(V*+W*)='2_(i',4gg 0o/’

and a comparison with (2.3) immediately gives the follow-
ing theorem.
Theorem 1:

[ :tqsq]spl 1'osp:\—"(q)osps (2-7)
i.e., the [ + ¢,9] reps of spl(1,2) stay irred on osp(1,2).

Now consider the (b,g) representation of spl(1,2). In
what follows, b # + ¢ is assumed and 4 is called the baryon
number according to Ref. 9. We shall prove the following
theorem.

Theorem 2:

(b’q)spl l'osp =i (q)ogp + (q - i)osp' (2'8)
Notice that we are not writing the direct sum. To show the
equivalence we will have to use a nonunitary matrix, which
results in a change of the metric.

Proof: Consider first the case g = }. This representation
contains only three multiplets, namely |b,q.4,),

|

|b+4g—4gs), and |6 — 1, — 1.93) (hence
8 = { = 7= = 0). In this case one has
D(l/2)(Qk) 0
Q= D(Q:) (2.9)
o - DOQ)

In general we order the blocks with decreasing isospin ¢ and
if the isospin is the same with decreasing baryon number b.
Notice that in the (1) + (0) rep of osp(1,2) @, reads as
(2.9). Hence, in order to show (2.8), we have to find a ma-
trix M that commutes with Q, and satisfies

MYV, +W M '=V,,,. (2.10)
From [M,Q, ] = 0 we obtain
M= lz #1 y 12 = y (2.11)
0 0 1
By Ay

where an overall constant has already been fixed.
Now, since b # + g we can choose the two indepen-
dent constants a and 3 as follows:

a=+\yb+1, B=y—b+1}, (2.12)
so that
WV, +W,)
0 (Z’A(;:/Z) B‘A (:L/Z)
=_;- ta-AY» 0 0
iB't‘A(ql:/Z) 0 0
(2.13)
Choosing
1, 0
M= 0 a B |, (2.14)
B —«a
we obtain
MV, + W, )M™!
0 AY» 0
=_;— :ttA(:'l:/Z) 0 0 = Vj;l/2’ (2.15)
0 0 0

where V', , is given in the (1) + (0) rep of osp(1,2). Note
that there are other possible choices of M that satisfy (2.10),
but that it is not possible to choose M unitary.

Let now g 1. In the (b,g) rep of spl(1,2) and in the (¢) + (g — 1) rep of osp(1,2) Q, reads

D ‘9(Q,)
Qk =

D(q—l/z)(Qk) 0

0 D@E=V(Q,)

(2.16)

D(q—l)(Qk)

From Schur’s lemma the most general nonsingular matrix M (up to an overall factor) that commutes with Q, is
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7S W 0 0 0

0 Aryel,, -1 0
M= 2 e e (2.17)
0 #2 * lzq A3 . lzq 0
0 0 0 1,,_,
Since b # 4 ¢ the constants a, B, and § are nonzero, so that without loss of generality we choose
a=vV(g+b)/2q, p=6=(qg—b)/2q. (2.18)
Thus, in the (b,g) rep we have
0 ad P pAY 0
1 1{ ta4?¥p 0 0 27 R
—Z—(Vi+Wi)=—2- LBU 0 0 —ad g1 (2.19)
0 iﬂtA %—1/2) IFa’A (qq:—l/2) 0
Now choosing A, = ai,, A, = —a,u, =4, B, and u, = B one obtains
,0 A4Q 0
L_1jt4@ o
MWV, +W, M ‘=—2- 5 S| = Vi (2.20)
0 +
’V :t tA (i_ 172) 0
r
where V', is given in the (¢) + (¢ — 1) rep of osp(1,2). It is easy to calculate
This completes the proof of (2.8). 0%2= (Na/2DUN./2)+1). KP=N.(1—-N.)=0
If b= + g, >}, one gets, for each sign, two inequiva- Q"= (Na/2)(Np/2) + 1), 2 r ¥) _(3:3)

lent not completely reducible representations. After restric-
tion to osp(1,2) one obtains for each case separately (2.8).
Here again it is not possible to choose the corresponding
matrix M unitary.

lll. OSCILLATOR REPRESENTATIONS

Let us now proceed to an explicit construction of oscilla-
tor reps of spl(1,2) and osp(1,2), which, in principle, have
been discussed by Palev'*>!* in a more general context with-
out regarding the connection between spl(1,2) and
osp(1,2).

A. One fermion and two bosons

In this section we shortly present the infinite-dimen-
sional representation S containing one fermion @ and two
bosons 7 and s, with
{ea*}=[rr*]=[ss"]1=1,

3.1)
[rs] = [r*s] = [ra]l = [s,a] = [r*,a] = [s*,a] =0.
Concentrating first on spl(1,2) we obtain

V*=a*r, V_= —a*s, W, =as*, W_=ar",
Q,=5"r, Q_=r*s, Qy=i(s*s—r*r), (3.2)
B = ’A\TF + 5&3,

where X’F =ag*aq and 1’\\79 =r*tr+s*s Since VI = W_
and V¥ = — W_, this defines a star representation of
spl(1,2).
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Hence, the spin of a single s1(2) multiplet contained in the
oscillator representation is givenby ¢ = § - Ny, Ny € N,. For
every value of Ny we can have Nz =0 or N, = 1. Now, an
irreducible spl(1,2) constituent consists of one s1(2) multi-
plet withg =} - Ny, Ng = 0 (hence b = ¢) and another one
with g=14.(Ng — 1), Ngp =1 (hence b =g +4), where
Ny = 0 gives the trivial representation.

Consequently, the infinite-dimensional oscillator repre-
sentation S contains exactly all nontypical representations of
type [¢.4]. i.e.,

=0 loql. (3.4)
For example, taking ¢ = 1, one gets
|1;1,1) = (l/ﬁ)(s+)2|0), [1;1,0) =r*s*|0),
|11, — 1) = (1/42) (r*)?|0), - (3.5)
|544) =a™s7|0), |k —4) =a"r*|0),
where the vacuum |0) is defined by
a|0) =r|0) =5]0) =0, (0|0) =1. (3.6)

Simultaneously, the vacuum spans the rep space of the trivial
[0,0] constituent.
Going now to the subalgebra osp(1,2) by V.,
1= 4V, + W, ), we obtain
Vap=3atr+as*), V_jp=4—a*s+ar"),
3.7
Q.=s5"r, Q_=r"s, Qy=A(s*s—rtr).

Consequently,
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[V+1/2a V—1/2] = A(ZNF - NB + ZNFNB )s
“ . . (3.8)

K% = (Ng + Ng/2)(1/2 4+ Ng/2).
By comparison to spl(1,2) one can see that K 3P takes the
eigenvalues ¢g(g +1) with g =1-Np, since Ng +1-Ny
= b = g. This, of course, agrees with

[q;q]spl losp’Z(Q)osp- (3°9)
In this case no splitting occurs, which means that no dynam-

ic symmetry breaking can be created by osp(1,2). Therefore
we turn to the next case.

B. One boson and two fermions

We now construct the oscillator representation 7" con-
taining one boson s and two fermions @ and b, with

[S,s+] = {aya+} = {b’b +} = 1;

[s,a] = [s,6) = [s*,a] = [s*,b] =0, (3.10)
{a,a} = {b,b} ={a,b} ={ab T} =0.
Then we have for the generators of spl(1,2),
V,=s%a, V_= —s5s*b, W, =sb*, W_=sa",
Q.=b"%a, Q_=a*b, Q;=4(b*b—a%ra), (3.11)
B =Ny + Ny,
where
R’B =s%s and l/\\’F =ata+b*b. (3.12)

As in the previous case, these relations define a star represen-
tationwith ¥V ¥ = W_and V¥ = — W . Calculating the
quadratic Casimir operators of spl(1,2) and its sl1(2) con-
stituent one gets

KP=N-N2 N=N, +Ns,

R . . (3.13)

K$=02=3-N.2-Np). |
The possible values of N are 0, 1, and 2. For Ny € N,, Q 2
takes the valuesOand 3, and B the values Ny, Ny + §,and Ny
+ 1. Thus, for N> 1, the irreducible constituents of this
oscillator representation are star representations of type (Vg
+ 4,1), all being four dimensional. The case N = 0 gives
the sum of two reps, namely [0,0] & [4,4], which will be
treated separately. Altogether we have

T=1[00] o [4] @ & (n+1). (3.14)

With the vacuum |0), defined by the relations
al0)=> |0) = 5|0) = 0and (0|0) = 1, onecanconstructan
explicit basis of the (N + 1,1) constituent for Ny =n>1,
namely

In + 534> = (1/4nD)b * (s7)7(0),

In+ L4, — 1) = (1/n)a* (s7)"|0),
(3.15)
|n 4+ 1;,0,0) = (1//(n + DY) - (s*)*+1]0),

|7,0,0) = — (1/J/(n — Dl)a*b *(s*)"~'|0).
This corresponds to the following choice of parameters,

which causes the representation matrices of the generators
to be real:
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a=y=Vyn+1, B= —€e=yn, 6=(=7=0=0.

3.16
The matrices become ¢ )
0
(3.17)
(3.18)
0 0 —n
v, = 0 0 ’
0 Vn+41 0
0 0
(3.19)
‘ 0 0
0 0
V_ = —~r
—yn+1 0 l 0
0 0
(o 73T
W, =
=+ \0 0 0 ’
0 Vn (3.20)
0 0 0
Jn+1 0
W _ =
0 0 0
\—# o
For the case Ny = 0 we obtain
354> =b*(0), |41, —1) =a™|0),
(3.21)
|1;0,0) =50}, [0;0,0) = |0).

The matrices read as above but with n =0. Since now
B = € =0, we have a four-dimensional, fully reducible rep
that is block diagonal from the beginning, namely
[0,0] @ [44].

Hence, Eq. (3.14) is obvious. If 7~ denotes the infinite-
dimensional rep space of T"and 77,,: = span(|n + 44, £ 1),
|n + 1;0,0),|7;0,0) ), we can also write

=8 7,

n=0

where only 77 is further decomposable with respect to 7.

(3.22)

C. Reduction of T to osp(1,2)

We will now investigate the reduction of T to the subal-
gebra osp(1,2). Clearly, from Sec. II, the net result will be
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Tlmpznéo((q = o)oop + (q = i)mp)’ (3.23)

where the problems concerned with the reduction will be
discussed explicitly. For Ny = n> 1 we reduce the represen-
tation (# + 4,4) in detail. The generators of osp(1,2) are, in
this context,
Q,=b%a, Q_=a*b, Qy=4(b*b—a"a),
(3.24)
Virz=4G"a+sb™), V_j =4 —s*b+sa™).

In the spl(1,2) basis |n + L3.4), |7 + 44, — 1), |n + 1;0,0),
|n;0,0), the last two operators have the matrices

0 i+l —n
v 1 0 0
+1/2—‘2’ 0 ‘/m 0 s
0 n
(3.25)
0 0 0
V—1/2='1— \/m _—‘/;
2y —Vyn+1 |0 0
—n 0

In order to block-diagonalize them without changing the
J

matrices of @, @_, and Q; we will use the transformation
matrix M,

[a] o
M=k0 ntl  —yn |,
—Vn yn+1
(3.26)
1, | 0
M= 0 yn+1  n |, det(M)=1.
vn o n+1,
This gives ¥ ,,, = MV, ,,,M ~! with
0 0 1|0
7 _1lo 0 ojo
+1/2 ) 0 1 ol o ’
0 0 0] O
(3.27)
0 00
-~ 1 0 0 1|0
V-ie=7 _1 o oo
0 0 0l0

Clearly, the transformation defines a new basis on the repre-
sentation space 7”,, namely

[(mB34) = (1/VnD)b * (s+)70),  [(m)E4, — §) = (1//nD)a™* (s*)"|0),

! Vn
(m)50.0) = [__ sy
o Vnl (n—1)!
I(n)O;0,0) = [____‘/—n___ (sH)"+1— Jn+1
Vin+ 1) Ja =11

ath*t(st)"~ 1] |0,

(3.28)

a+b +(s+)n—l] |0)'

The matrix M is not unitary and, furthermore, it is imposéible to block-diagonalize V,.,,, and V_,, with a unitary matrix.
Hence, the Hermitian inner product must be destroyed by this transformation. Indeed one obtains the dual basis

((m)gs44] = Ols™ - b (L/YRD), (MK, — 3| = (OJs” - a - (1/mD),

1 - n
(n)%:0,0] = (0 [s"“-——+s" ’-ba-————], (3.29)
((n)30,0 | o Gy
Vn —1 n+1
((n)0;0,0|=(0|[-—-s"+1-——————s" S L < W
Jm T DI Jr =D
with the result that via
((n)40,01 #|(n)3;,0,00*, ((n)0;0,0|#](n)0;0,0)*. (@)= (@ ) ¥). (3.32)

(3.30)

Hence, we no longer have the canonical dual basis. This
forces us to distinguish between the bilinear form ( -, - )
defined on #7¥X 7", where 7% is the dual space, and the
inner product of 7”,. The latter results from the old bilinear
form ( -, - ) by the mapping

¢ 7,7

wnwm=w»iiuwmﬂ (3.31)
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Here, (j|, 1<j < 4, denotes the canonical dual basis to the
Fock space basis constructed above.
For the new bilinear form ( .,- ), the map ¢ induces

eley| (mE4) + e (r)4i4, — 3)
+ ¢5|(7)3;0,0) + ¢4|(#)0;0,0))
= ((m)LiA]c? -+ ((m)h:h, — et
+ ((m30,0|[ 27 + 1)et + 2yn(n + Det ]
+((m)0;0,0{[2Va(r + Det + 2n + 1)c:].(3 )
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As a consequence, we get, for the new basis vectors,

[ |(n)§;0,0)||2 = || |(n)0;0,0)|> =2n + 1 (3.34)
and
(¢](1)40,0),](7)0;0,0)) = 2/n(n + 1). (3.35)

This means that the reduction of the spl(1,2) representation
to the subalgebra osp(1,2) results in a basis that is neither
normalized nor even orthogonal in the old metric (3.32),
which cannot be changed for physical reasons.

In the previously discussed oscillator rep S with one fer-
mion and two bosons (Sec. III A) we avoid the problem
since only nontypical spl reps of type [¢,g] occur that stay
irred after restriction to osp(1,2).

D. Quadratic Casimir operator of osp(1,2) and its non-
Hermiticity

To get a deeper insight into the problems mentioned
above, let us calculate the quadratic Casimir operator K 3
in the oscillator rep 7. We obtain

K$=34%,
where

2= (Ve + 1) + WV (1= Np) — 1N (N + V),

3= ~i(stastb+atshb™s), (3.37)

Zt=3, 3t= -3

in the old spl(1,2) basis, defined by Eq. (3.15), one has, for
the several irreducible constituents, the block matrices

(3.36)

1, j 0
K‘z’“’=—;— n+1 —Jn(n+1) |, (3.38)
Jya(n+ 1) —n
while, after the similarity transformation by M, one has
NE
KPP = b 0 (3.39)
0 0 0

Clearly, this means that the new basis vectors |(n IR W'Y N
|(7)0;0,0) form an eigenbasis of K $*° to real eigenvalues.
This is only possible, if [2,2] 0. Indeed,

2] = i(sTastb—atsb*s)

+4(s*tas*b- ﬁn — 1?’,, -atsb*s), (3.40)
and, consequently,
[K$®, (K *] =2[3,2] 0. (3.41)

But the last relation shows that K $* in this oscillator rep is
not even a normal operator, which explains the appearance
of nonorthogonal eigenstates.

IV. PHYSICAL IMPLICATIONS

In this section we try to translate the mathematical
structure of our simplified model to the language of nuclear
physics.
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A. Consequences of the reduction spl(1,2),08p(1,2)

The rep theory of graded Lie algebras possesses some
properties unknown from ordinary Lie algebras. Concepts
like Hermitian reps, complete reduciblity, and the Schur
lemma have to be generalized.'® Consequently, one should
expect some problems for application to physics; we deal
with one in our simple model.

In the oscillator rep T of Sec. II1 B the quadratic Casi-
mir operator of osp(1,2) reads

K@P=34+3,
with
St=3 It=—7F, and[Z,3]1+#0.

Hence, K 3 is neither a Hermitian nor even a normal opera-
tor. If K 5 is now part of a Hamiltonian, as is suggested by
the usual scheme of dynamic symmetry breaking, we get in
general a mixture of states correlated with a change of the
metric. This means that the new state vectors are neither
normalized nor even orthogonal with respect to the original
metric (cf. Sec. III C).

In the context of our model the reduction
spl(1,2) losp(1,2) causes a mixture of states that corre-
spond to nuclei with different nucleon numbers since the
definition of what we call nucleus has been given in terms of
spl(1,2) state vectors. Recalling Eq. (3.15) from Sec. III B,
we obviously have

Ny =n+1, Ng=0, forthestate|n+ 1;0,0),
Ng =n—1, Ng=2, forthestate |n;0,0),
Ny =n, Ng =1, forthestates|n+ 1, +1).

Hence, the total number of quasiparticles is N = Ny + Ny

= n + 1, while the numbers of real particles are 2n + 2, 2n,
and 2n + 1, respectively, defining ground-state nuclei with
spin-0 or -4. As the reduction mixes the nuclei |z + 1;0,0)
and |n;0,0), one cannot hope to find any meaningful expres-
sions for transition elements or selection rules.

Let us add a further note to the reduction discussed in
Sec. III C. As the reader may have noticed, no problem is
present in the case Ny =0 [Eq. (3.21)] since then the
osp(1,2) part is block diagonal from the beginning. But the
states then contain at most either a fermion or a boson. As,
additionally, one of the states is the vacuum, this case is
irrelevant for nuclear physics. That is why we only investi-
gated the case Ny >1.

4.1)

4.2)

B. An inverse analysis for dynamic symmetry breaking

We will now discuss the relevance of the dynamic sym-
metry breaking in the context of our simple model with one
boson s and two fermions a,b. To this end, we will proceed
backwards, i.e., we will start with the most general s1(2)-
invariant Hamiltonian A that is compatible with the under-
lying physics. Then H should be a function of the creation
and annihilation operators, i.e.,

H=H(ss ,aat,b,b™), 4.3)

and should consist only of a sum of terms that are bilinear or
quartic in the operators, where we disregard an overall con-
stant in H. Furthermore, we demand that in every term the
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number of creation operators equals the number of annihila-

tion operators. Then, the most general expression for H
turns out to be

H—:a‘ﬁrp +B'XrB +7"ﬁ%‘ +6'ﬁ§ +€'1’€rp 'ﬁ’B
+&-stastb+mn-atsbh*s. 44)
The non-Hermiticity problem occurring with the last two
terms will be discussed later on. If we now rearrange the
Hamiltonian for terms that are spl(1,2) and osp(1,2) invar-
iant we obtain
H=a -N+B-K¥+7.K®+8.K3
+& Ny —Ne) + £+ (Vs — Ne)?

+f(s*TasTb—atshbts), (4.5)
with
KP=N-N?,
Kg’p=iﬁl=+ﬁn_iﬁé_ﬁr‘ﬁn
—(s*as*b+a*sb*s), (4.6)
K¥=3N. (2~ Ne).
The coefficients are related via
()
P l="M|: ),
] 7
1 1 0 0 0 0 0
(1 1 -1 —-1 -2 0 0
i ¥+ -3 0 -} -1 -
M=] 3 o -3 o o o o0 |,
-1 1 0 0 0 0 0
\O 0 1 1 -2 0 0
0 0 0 0 0 1 -1
det M = — 65£0. 4.7)

Let us pause for two remarks. First, we have two linear-
ly independent terms that are spl(1,2) invariant, namely
K %'and N. Second, by the appearance of seven linearly inde-
pendent s1(2) invariants, we truly cannot write the Hamil-
tonian as a pure sum of Casimir operators without suppress-
ing some terms. The most striking one is

Q:=s as*b—atsh*s, (4.8)

which is a consequence of the imposed combination of a bo-
son with two fermions. Furthermore, () can serve as transi-
tion operator, which will be discussed below.

The only non-Hermitian expression in Eq. (4.5) is now
K $*®, which can be written as (cf. Sec. ITII D)

KP=3% 43,
with
S= - jGstastb+atsb*s), TV =3, S+t=_3.

4.9)

If we arrange the Hamiltonian to be Hermitian from the
beginning; i.e., if we take 7 = — ¢, it will be impossible to
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establish a true osp(1,2) symmetry! This is because we will
get

H=a -N+B - KP+v K3 +8 - Na +1Ne)
+¢€- (!’\\'B —1/\7,,)2 +¢'-(stasthb—atsh ts),
(4.10)

where the primed coefficients are related to the unprimed
ones by

a a
E)':'M' E)’
e s’

11 0 0 o0 0
11 -1 —1 =20
0 -3 0 0 0
o & i ’
} 1. 0 0 0 0
00 1 1 -—20
00 0 0 o0 1
det M’ = 30. (4.11)

One has to conclude that the appearance of an osp(1,2)-
invariant term that is not automatically spl( 1,2)-invariant is
equivalent to the appearance of a term proportional to
(s*as*b + a*sb *s) in the original Hamiltonian.

Clearly, the two possibilities to rearrange the Hamilton-
ian shown above are correlated to the chains
spl(1,2) D osp(1,2) D sl(2) and spl(1,2) D gl(1)
Xs1(2), respectively. The first one produces a non-Hermi-
tian Hamiltonian with all its problems discussed above while
the second one avoids the whole trouble by throwing out the
non-Hermitian contribution.

Furthermore, for the second chain, the operator (1 de-
fined by Eq. (4.8) can be interpreted as a transition operator.
In the spl(1,2) basis we find

0 l 0
Q= 0 ya(n+1) |, (4.12)
Jr(n+1) 0

which means that {2 describes an interaction only between
the states |n + 1;0,0) and |#;0,0), i.e., replacing two bosons
by two fermions or vice versa. In terms of selection rules this
reads as

Ab=0,+1, Ag=0, Ag,=0. (4.13)

This may serve as a verification of the impossibility of
writing the Hamiltonian as a sum of Casimir operators, since
this at least means dropping the operator 2, which is a direct
consequence of supersymmetry.

V. CONCLUSION

In the mathematical part of this paper, the reduction of
the simple Lie superalgebra spl(1,2) to its subalgebra
osp(1,2) has been presented. The decomposition of repre-
sentations was outlined explicitly in terms of similarity
transformations, whereby the necessity emerged to change
the metric.
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The same program was carried out with the ordinary
oscillator representations after separating out their irreduci-
ble constituents. In one case, the quadratic Casimir operator
of osp(1,2) was not normal. This reflects the fact that the
osp superalgebras do not have star reps but at most grade
star reps.'*!!

In the physical part of this paper, the reduction
spl(1,2) losp(1,2) served as a simplified model for the inves-
tigation of dynamic supersymmetry breaking in nuclear
physics. We found that the chain
spl(1,2) D osp(1,2) D sl(2) produces a Hamiltonian that
is neither Hermitian nor even normal. Its diagonalization
causes mixtures of different nuclei and, simultaneously, a
change of the metric. Hence, selection rules and expressions
for transition elements will have no satisfactory physical in-
terpretation. For these reasons, we claim this breaking
mechanism to be unphysical.

One can avoid all these problems by taking the chain
spl(1,2) D gl(1) xsl(2), which, of course, breaks super-
symmetry already in the first step. '

Although the restriction of our model is obvious, the
consequences are quite far reaching. The whole structure,
like non-Hermiticity, state mixing, and so on, is also present
in a realistic model involving the chain
spl(6,2m) D osp(6,2m) D ..., which was recently pro-
posed by Morrison and Jarvis.® A more detailed discussion
of this model as well as an alternative approach without the
problems described above will be given in a forthcoming
publication.
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APPENDIX: IRREDUCIBLE REPRESENTATIONS OF
8pl(1,2)

In what follows we briefly present the main results on
the classification of spl(1,2) taken from Scheunert ef al.°

The states of an irrep are labeled by the baryon number b
and the isospin ¢ with its projection ¢, corresponding to the
operators B, Q 2, and Q,, respectively. For convenience, this
terminology has been taken over from high energy physics
(cf. Ref. 9) although the numbers b and ¢ may have a differ-
ent meaning in the context of nuclear physics.

In a single irrep we have at most the states

|6;9:93), |6+ kg — 1.43),
(AD)

|b - i)q - £,q3>s Ib,q - 1:43)-
The generators act on these states as follows:
Qs|5;9.95) = q3|b;9.95),
Q. 1699 =V(@F ) (gt g+ 1) |biggs £ 1), (A2)
V. |big.gs) = £ agFas1b+ kg —4g; + 1),
W.lbag:) = £ BVaFa:lb—hg—has 1),  (AI)

Vilb+Lg—Lgs) =0,
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W;t |b +Lq— i,%)
=Wqgtq,+1|bg.q:+1)
184 F g —1|big— 1,g, + 1),

Volb—%q— },43)
=elgtg;+ 1609 £ 1)
+6VaFa—1lbg~ g £ 1),
W, lb—4e—14) =0,

(A4)

(A3)

V,|bg— g =g+ q:lb+ L9 —3a: £ 1),

W, bg—1g)=ogtg:lb—Lqg—iq:+1), (A6)

where the constants a, 8,...,7,@ are independent of ¢, but
may depend on ¢ and b.

We can now classify the irreps of spl(1,2).

(a) ¢ = 0 gives the trivial rep of spl(1,2).

(b) Setting ¢34, B=0=€e={=7=w=0, b=g,
a-y=1, where a#1 is arbitrary, yields the rep of type
[g.9] that contains the multiplets |b;g,9;) and
|6 + L;¢ — 1,¢5) but not the multiplets |b — ;g — 1,45) and
|b;g — 1,45) The dimension is 4¢g + 1.

(c) Settingg>l,a=y=6={=71=w0=0,b= —gq,
B-€e=1, where 8 #0 is arbitrary, yields the rep of type
[ —g,q] that contains the multiplets |b;q,9,) and
|6 — };¢ — 1,¢5) but not the multiplets |b + ;g — 1,4,) and
|b;g — 1,q5). The dimension again is 4g + 1.

(d) Setting g=4, 6={=7=0=0, a-y=1+5b,
B - € =1 — b, defines the four-dimensional rep of type (4,4),
where only the multiplet |b;qg — 1,¢,) is missing. Solutions
with nonzero @ and f are equivalent. For b = T} we will
exclude the solutions with vanishing a or j3, since they are
irrelevant for our purpose.

(e) If an irrep (g>1) contains all four multiplets, the
constants @, f,...,7, must solve the following nonlinear sys-
tem of equations:

ae+{7=0, By+bw=0,
ay+Be=1, Pe+{fw=1,
ay+6r=1, ér+lw=1,
ab+p5=0, yr+ew=0, (A7)

ay—Pe=b/q, 6r—fw—= —b/yg,
ay(g+3) —8r(g—3)=b+1},
—Be(qg+1) +fw(g—1) =b—}

For b # + g the solution of these equations may be giv-
en in terms of the constants a, 8, and 8. The only possible
solutions require these constants to be nonzero. Representa-
tions with different (nonvanishing) values for @, 5, and  are
equivalent. If b = 1 g, there are some additional solutions,
where some of the free constants vanish. Since for our pur-
pose these additional solutions are irrelevant, we will not go
into details.
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In the present series of papers, the coherent states of Sp(24,R), corresponding to the positive
discrete series irreducible representations (1, + n/2,..,4, + n/2), encountered in physical
applications, are analyzed in detail with special emphasis on those of Sp(4,R) and Sp(6,R). The
present paper discusses the annihilation-operator coherent states, i.e., the eigenstates of the
noncompact lowering generators corresponding to complex eigenvalues. These states generalize
the coherent states introduced by Barut and Girardello for Sp(2,R ), and later on extended by
Deenen and Quesne to the Sp(2d,R ) irreducible representations of the type ({4 + n/2)?). When
Ay, A4 are not all equal, it was shown by Deenen and Quesne that the eigenvalues do not
completely specify the eigenstates of the noncompact lowering generators. In the present work,
their characterization is completed by a set of continuous labels parametrizing the (unitary-
operator) coherent states of the maximal compact subgroup U(d). The resulting coherent states
are therefore of mixed type, being annihilation-operator coherent states only as regards the
noncompact generators. A realization in a subspace of a Bargmann space of analytic functions
shows that such coherent states satisfy a unity resolution relation in the representation space of
(A4 +n/2,..,A, + n/2), and therefore may be used as a continuous basis in such space. The
analytic functions and the differential operators representing the representation space discrete
bases and the Sp(2d,R) generators, respectively, are found in explicit form. It is concluded that
the annihilation-operator coherent state representation provides the mathematical foundation for
the use of differentiation operators with respect to the noncompact raising generators in symbolic
expressions of the Sp(2d,R) generators. This is to be compared with the habit of replacing a boson

annihilation operator by a symbolic differentiation with respect to the corresponding creation
operator, accounted for by the Bargmann representation of such operators.

I. INTRODUCTION

The purpose of the present series of papers is to study the
generalized coherent states (CS) of the real symplectic
group Sp(2d,R), corresponding to the positive discrete se-
ries irreducible representations (irreps) (A1) = (1, +n/
2,..,A; + n/2) (see Refs. 1-3). Special emphasis is laid on
the CS of Sp(4,R) and Sp(6,R), amenable to some interest-
ing applications in physical problems.

The first paper in this series* (henceforth referred to as I
and whose equations will be subsequently quoted by their
number preceded by I) was devoted to the unitary-operator
CS, as defined by Klauder,’ Perelomov,® and Gilmore.” Asis
well known, such CS exist in one-to-one correspondence
with the points of the coset space Sp(2d,R)/H, where H is
the stability group of the irrep (1) lowest weight state
| (A) min )» chosen as reference state. It was shown in I that a
convenient parametrization of the CS is provided by a com-
plex symmetric d Xd matrix u, subject to the condition
I — u*u> 0, and by a set of parameters z characterizing the
CS of the maximal compact subgroup U(d), corresponding
totheirrep [A] = [A, + n/2,...,A, + n/2]. Such a parame-
trization is based upon a factorization of the coset space
Sp(2d,R)/H into the product of coset spaces Sp(2d,R)/
U(d) and U(d)/H.

* Maitre de recherches F.N.R.S.
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The present paper deals with a generalization to
Sp(2d,R) of the Sp(2,R) CS introduced by Barut and Girar-
dello.® The latter are defined as the eigenstates |w) of the
noncompact lowering generator D = D,,,

D|w) =w*|\w), (1.1)

corresponding to a complex eigenvalue w*. They can be
termed annihilation-operator CS because the lowering gen-
erator D annihilates the lowest weight state of the Sp(2,R)
irrep (4 ), and therefore plays the same role with respect to
that reference state as the oscillator annihilation operator
with respect to the oscillator ground state.

When we consider Sp(24,R) instead of Sp(2,R), as
shown in Eq. (I 2.5a), the lowest weight state |(A4),) is
annihilated by the set of noncompact lowering generators
D; =Dy, i,j=1,...,d. Since the latter commute with one
another, we may search for their common eigenstates |w),

(1.2)

corresponding to some complex eigenvalues w} = wf. Here,
w denotes the complex symmetric d X d matrix whose ele-
ments are wy. In the case where A, = -« = 4, =4, Deenen
and Quesne®'® proved that for any complex symmetric ma-
trix w, Eq. (1.2) does have a uniquely defined solution, and
they exhibited the latter in explicit form for Sp(4,R) and
Sp(6,R).

In contrast, when all the 4,’s are not equal, Deenen and
Quesne’! demonstrated that for any complex symmetric ma-

D;|w) =w}lw), ij=1,..4d,
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trix w, Eq. (1.2) has more than one independent solution
(actually the number of independent solutions is equal to the
dimension A of the U(d) irrep [A]), hence the CS are not
completely specified by w. The missing labels cannot be de-
fined as the eigenvalues of some extra lowering generators,
since no such operator commutes with the whole set of gen-
erators D;;. This means that a straightforward generalization
of the Barut—Girardello Sp(2,R) CS does not exist for
Sp(2d,R) whenever A,,...,A, are not all equal. To face this
difficulty, Deenen and Quesne!’ used as missing labels the
Gel'fand patterns (4) characterizing the rows of the ir-
rep'*'* [A], thereby introducing partially coherent states
(PCS) |w;(1)), specified by the continuous parameters w
and the discrete labels (4).

The present paper proposes an alternative to this proce-
dure, wherein instead of the discrete labels (1), continuous
parameters z are used to completely specify the eigenstates of
Dy, i,j = 1,...,d, which are therefore fully CS in contrast to
the PCS of Ref. 11. Asin I, the parameters z characterize the
U(d) CS corresponding to the irrep {A].

The CS |w,z) are defined in Sec. II, and some of their
properties are reviewed in Sec. III. In Sec. IV, the U(d) CS
representation is realized in a subspace of a Bargmann space
of analytic functions,'> wherein the complex parameters z
are given a well-defined meaning. In Sec. V, a similar proce-
dure is applied to both the parameters w and z, thereby
showing that the CS |w,z) satisfy a unity resolution relation
in a subspace of a Bargmann space. Finally, Sec. VI contains
some concluding remarks.

Before proceeding, a few words about notations are in
order. In I, we used an angular bracket for the unitary-opera-
tor CS |u,z), and a caret above the symbols denoting the
corresponding quantities, such as the measure d6(u,z), the
functional representation ¥ (u,z), etc. In the present paper, a
round bracket is used as the notation for the annihilation-
operator CS |w,z). The measure do(w,z), the functional
representation ¥(w,z), etc., corresponding to such states are
denoted by the same symbols as in I, but without the caret.
For the quantities not associated with CS, such as boson
operators, generators, etc., the definitions and notations of I
are used without change.

Il. DEFINITION OF THE ANNIHILATION-OPERATOR
COHERENT STATES

In the case where A, = .- =4, =4, (see Refs. 9 and
10) it has proved convenient to rewrite Eq. (1.2) in the uni-
tary-operator CS representation, corresponding to the states
|u) defined in Eq. (I 3.3),

(u|Dy|w) = wiulw), 4j=1,..d. (2.1)
Since the corresponding representation of D is the partial
differential operator

2, (22)
du,

Eq. (2.1) is indeed equivalent to the following system of
first-order partial differential equations for the overlap
(ulw),

Dy=0,=1+86)
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A, (ulw) =wi(ulw), ij=1,..4d. (2.3)
Its solution is given by
(u|w) = G(w*)exp(} tr uw*), 2.4)

where G(w*) is an arbitrary function of w*. If we fix the
normalization of |w) in such a way that

(Dinl®) =1, (2.5)
then

G(w*) =1, (2.6)
and Eq. (2.4) becomes

(u|w) = exp(} tr uw*). 2.7)

Equation (2.7) uniquely determines the states |w), which
can be expanded as follows:

|w) =J.d¢“7(u)exp(itr uw*)|u), (2.8)

where ddr(u) is the measure corresponding to the CS |u)
given in Egs. (1 6.2), (16.10), and (I 6.13). Therefore, for
any complex symmetric matrix w, Eq. (1.2) has a unique
solution |w), subject to the normalization condition (2.5).

For those cases where the A,’s are not all equal, the
above procedure converts Eq. (1.2) into the following rela-
tion:

(wz'|D;|w) =wiuz'|w), ij=1,..4d, (2.9)
where |u,z’') is now the unitary-operator CS defined in Eq.

(I 3.6). Since from Eq. (1 5.3a), Eq. (2.2) remains valid, we
obtain the system of partial differential equations

(2.10)

which only differs from Eq. (2.3) by an extra 2’ dependence.
The solution of Eq. (2.10) is given by

(u,z'|w) = G(Z',w*)exp(} tr uw*), 2.11)

where G'(z',w*) is an arbitrary function of z’ and w*. If we
retain the normalization condition (2.5), then

G(0,w*) = 1. (2.12)

Hencethe z’' dependence of the right-hand side of Eq. (2.11)
remains arbitrary. Therefore, for any given complex sym-
metric matrix w, Eq. (1.2) admits more than one indepen-
dent solution.

Let us consider the states |w,z) defined by the relation

(n,z'|w,z) = I?(z’;z*)exp(; tr uw*) = (z'|z) (u|w),

(2.13)
where z has the same meaning as z), i.e., parametrizes the
U(d) CS corresponding to the irrep [1], and K (z';z*) is the
U(d) CS overlap, whose explicit expression is given in Eq.
(14.22). As in I, we may choose for z either the x or y
parameters. From Eqgs. (2.11) and (2.12), it is obvious that
the states |w,z) are solutions of Eq. (1.2) and satisfy the
normalization condition (2.5), i.e.,

A,,y(u,z’lw) =wi{wz'|w), ij=1,.4d,

D;|w,z) = w}|w,z), (2.14)
and
((A) i | W,2) = 1. (2.15)

Moreover, they are uniquely determined by Eq. (2.13),
since they can be expanded as
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|w,z) = f d&(u,z’)I?(z’;z*)exp(; tr uw*)|u,z’),

(2.16)
by making use of Eq. (I.6.1).

For any complex symmetric matrix w, the states |w,z)
form an uncountably infinite set of linearly dependent solu-
tions of Eq. (1.2). In Ref. 11, it has indeed been shown that
Eq. (1.2) has exactly A independent solutions |w;(4)),
which may be labeled by the Gel’fand patterns (A4) associat-
ed with the irrep'?-'* [1], and may be defined by the relation

(W (A ) |w;(4)) =81y, (W), (2.17)

where |u;(4’)) is the PCS given in Eq. (I 3.4).
We now proceed to prove that the known expansion of
the unitary-operator CS into PCS, given in Eq. (I 8.5),

= A/I * ;ﬂ' ’
ju,z) g:)[¢< y (2)]*w (1))

leads to a similar expansion of the annihilation-operator CS
in terms of the A independent solutions of Eq. (1.2),

z) =Y [du, (2)]*|W;(4)).
|wz) (;)[¢(M(z ] |W(

For such purpose, all we have to show is that the overlap of
the right-hand side of Eq. (2.19) with the bra (u,z'| satisfies
Eq. (2.13). From Eqs. (2.17) and (2.18), we immediately
obtain the result

we| ¥ [B (2)]*] W(A))

(2.18)

(2.19)

= [; a(/l) (z') [a(g) (z) ] *] (ulw), (2.20)
1)

where the factor between curly braces may be rewritten as
b (Z) [Bay @ ]* = T (Z|(D)){((D)]z)
(% Py (Z) [Py (2) ] ; (Z[(A){A)]

= (z'|z),
thus completing the proof of Eq. (2.19).
In the next section, we shall review some properties of

(2.21)

the states |w,z). Their demonstration could be based on Eq. -

(2.19) and the corresponding properties of the PCS |w; (1))
established in Ref. 11. As an alternative, for the sake of easi-
ness we shall start from the definition (2.13) of |w,z).

lll. SOME PROPERTIES OF THE ANNIHILATION-
OPERATOR COHERENT STATES

To begin with, let us determine the overlap of the states
|w,z) with the discrete basis states of # ;,, introduced in
Eq. (12.6),

IN; (1)) = Fe (DN | (1)), (3.1)
where Fy (D™) is defined in Eq. (I12.7). From the Hermi-
tian conjugate of Eq. (2.14), it results that

¢N(A.) (wz) = (W,Z|N; (/1))

= Fy (w)(w,z|(A)). (3.2)
_J

To calculate (w,z|(4)), it is convenient to expand |(4)) on

the continuous basis of U(d) CS associated with the irrep
[A}. For such purpose, we need their unity resolution rela-
tion, Eq. (I 6.20), rewritten in the following form:

Jdﬁ(z)lz) (z| = L (3.3)
we obtain

(wz|(1)) = fdﬁ(Z’)(w,ZIZ’)(Z’l(/i)% (3.4)
where from Eq. (2.13)

(w,z|Z') = (w,2|0,2) = (z|z'). (3.5)
By using Eq. (3.3) again, Eq. (3.4) becomes

(wz| (1)) = (2| (1)) =, (2). (3.6)

Finally, by combining Egs. (3.2) and (3.6), we get the de-
sired result

bnc (W,2) = Fy (W) 1, (2). (3.7

Similarly, the overlap of |w,z) with the discrete basis
states of Eq. (12.9),

[([111A Dalh ] Bk)g) = [Py (DY X |( ))]ak)
‘ (3.8)

classified according to the group chain Sp(2d,R)
D U(d) D SO(d), is given by

Prirain g (W2) = (Wz|([I 1{A Dalh ] B(k)q)

=[Py (W)X, (2) ]38}, (3.9)

Anticipating the results of Sec. V, where the set of states
|w,z) will be shown to form a continuous basis of ¥ (;,, we
may interpret the functions (3.7) and (3.9) as the respective
annihilation-operator CS representation of the states (3.1)
and (3.8). By contrast to the unitary-operator CS represen-
tation, the present representation is very simple, and actually
can be written in explicit form for Sp(4,R) and Sp(6,R ). For
such purpose, we only have to introduce into Eqs. (3.7) and
(3.9) the explicit form of ¢ ;, (z) given by

&,, (2) = [(A, — A2 (A, — ) — A~V =,
(3.10a)
or
B (2) = [DN2L( = mGi+ m)l] 12+,
(3.10b)
in the U(2) case, and by

5 2 Wy~ — K\ (1 — 4,
¢F‘ll‘2 Hy B2 - #1 —y k

Xxllll —A;— kx3V—#z - k(x2 _ xlxs)l-"z—;w + k’
(3.11)
inthe U(3) case. Here the Gel’fand patterns (A ) are denoted
by (u + n/2) and (**% %+ "2) for U(2) and U(3), re-
spectively, j=(A; —A4,)/2, m=pu — (A, +A,)/2, and

N /4 is the following normalization coefficient:

Nﬁ:ﬁﬁf = (= D* 5[y —pa + DAy = ADUA — A3 + DI, — ANy — MY —p ]2

XAy =My — AN ey — Az + DIA, — oy + DA — )y — AN Y2
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Equations (3.10) to (3.12) are valid for generic irreps, and
are demonstrated in Appendix A. The results for U(3) ir-
reps, for which 4, >4, =4, or A, = A,> 4,, can be easily
obtained by specializing Egs. (3.11) and (3.12), and by us-
ing Eq. (I 3.16) relating the x and y parametrizations. They
are given by

Bt (X) = [(; = ANV
X[(A —p) g =)y —A)!] -2
Xx M~ vx,Y R, (3.13)
and
Bao s (1) = (= 12~ B[ (4, — Ap)]2
X [z — ANA, — Uy — ;] 72
Xyt Ry, =, (3.14)
respectively.

* Let us now consider the action of the Sp(2d,R) genera-
tors on the annihilation-operator CS |w,z). We shall proceed
to prove that any generator X is equivalent to some partial
differential operator #° with respect to w and z when applied
to a bra (w,z|,

(wz|X = #(w,z|, (3.15)
and find the explicit expression of #°. Then by taking the
Hermitian conjugate of Eq. (3.15), it will result that

Xt\wz) = #*%|w,z), (3.16)
where #°* is the complex conjugate of £, i.e., a partial
differential operator with respect to w* and z*. Once again
anticipating the results of Sec. V, we may interpret £ as the
annihilation-operator CS representation of X.

From the Hermitian conjugate of Eq. (2.14), it is ob-
vious that the representation of D' is simply given by

Dt=w. 3.17)

To find the representation of & and 4, it is convenient to
take the scalar product of both sides of Eq. (3.15) with a
continuous basis state |u,z’), and to use the Hermiticity
properties and the unitary-operator CS representation of the
Sp(2d,R) generators, respectively, given in Egs. (I 2.2) and
(I5.3). In this way, we obtain the following relations:

(w,z|E; |0z’ = (wz'|E,|w,z)*
= [u*A,. + &*](wzluz), (3.18)
and
(w,z|D;luz’)
= {(u,z’ |D |w,z)*
= {us®" 4 &'out + [uoA,,

X (w,zju,z'),

—(d+ l)I]u"}y
(3.19)
|

U(dn) -] Ud)

[N+3,0)*" 1]
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[A]=[4 + n/2ihy +1/2]

where & #* is a differential operator with respect to z'*. It is
now straightforward to convert the differential operators
with respect to u* and z'* into differential operators with
respectto wand zin Eqs. (3.18) and (3.19), by applying Eq.
(2.13) and the following relations:

[Auv,u“] = [va,wk,] = 6”‘6]1 + 5,,5,,‘, (3.20)
‘uyexp(jtru*w) =4, exp(}truw), (3.21)

(u*A,, ), exp(} tr u*w) = (wd, ), exp(} tr u*w),

(3.22)
#;*(zlz') = (Z|E,|2)* = (z|E,|z')
= #,(z|z). (3.23)
The results for & and & read
&=wA, + &, (3.17)
and
D=A, &+ &A, +A,[wA, — (d+ DI], (3.17")

where & is given by Eqs. (I 5.9) and (I 5.10) for U(2) and
U(3) respectively. We note that Egs. (3.17) have the same
structure as the corresponding equations in the PCS repre-
sentation corresponding to the states |w;(4)), Eq. (6.15) of
Ref. 11.

In Sec. V, we shall realize both the functions ¢y, (W,2)
and the differential operators £’ in a subspace of a Barg-
mann Hilbert space of analytic functions, thereby showing
that the annihilation-operator CS satisfy a unity resolution
relation in & ,, . For such purpose, it is useful to first estab-
lish similar results for the functions ¢( 1 (2) and the differen-
tial operators & g» corresponding to the U(d) CS representa-
tion. This is the topic of the next section.

IV. REALIZATION OF THE U(d) COHERENT STATE
REPRESENTATION IN A BARGMANN SPACE OF
ANALYTIC FUNCTIONS

Let us consider the U(d) group generated by the opera-
tors

E;= }_:l N & + -%-5,,, i,j=1,..d, 4.1)

where 7, &, i = 1,...,d, s = 1,...,n, are the boson creation
and annihilation operators introduced in 1. This U(d) group
can be embedded into a larger group U(dn) in the following

way'?:

X U(n)

A)=[A+d/2.. A, +d/2,(d/2)"~?].

(4.2)
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Here U(dn) and U(n) are generated by the operators

E,,= i(ﬂisgjr + gjt"is) = 77:'.:5;: + ifsij‘ssn (4.3)
and
d
= z 77is§n‘ +— ) 5."’ (44)
i=1

respectively. In Eq. (4.2), underneath each group we have
indicated the labels characterizing its irreps. All N-boson
states belong to a single U(dn) irrep characterized by
[N +3,(3)%~']. Within any such irrep, the U(d) and
U(n) groups are complementary. 13.16 This means that the
reduction of the U(dn) irrep into irreps of U(d) X U(n) is
multiplicity free and that any U(d) irrep [4], for which
3,4, = N, occurs with multiplicity equal to the dimension of
the U(n) irrep [A]’, and conversely. The representation
space of [A] may therefore be realized by selecting all V-
boson states transforming under a U(n) irrep characterized
by [A1]’, and belonging to a definite row of the latter, e.g., the
highest weight state.

In the Bargmann representation,'® 7,, and £, are, re-
spectively, represented by some complex variables w,,, and
the corresponding differential operators d /dw,,. Any boson
state |¢) is represented by an analytic function ¥(W) in the
dn complex variables w,, i = 1,...,d, s = 1,...,n. The space
spanned by the analytic functions /(W) is a Hilbert space,
whose scalar product is defined by

) = f du (W) [y (W) ]*¢ (W), (4.5)
where

du(® = [T T] du@o), (4.6)
and o

du(B,,) = 7' exp( — W2, )d, div?. (4.7)

In Bargmann space, the operators E, ;, E;;, and E, are
represented by partial differential operators, denoted for

simplicity’s sake by the same symbols, for instance,

E w,: n(SJ.

s=1 J; 2

(4.8)

The functions ;, (W) of thé d ? variables Wy, i,j = 1,....d,
which are the simultaneous solutions of the system of partial
differential equations

E wki

¢(4) (W) =49, (W),

(4.9)

d

_ 4 _
=0,
kgl Wh 0w, Yoo ()

span a subspace of Bargmann space, which provides us with
arealization of the U(d) irrep [1] representation space. The
functions ¥, (W) can be written as'"’

i< j,

Yo (W) =9, (W)
wil wid,lz w13... d12.d—1
XZ(,{)(_ YT geesy T s
Wy1 Wq_1412 Wy..diwd—1

(4.10)
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in terms of the lowest weight state function

Yty (W) =M W@, 14,12 )

Ag_1—Ags— A,
d——l) -t d(w1...d,1...d) d;

(4.11)

A (1w,

X X (wz ved,] e

and of some polynomials Z ;, in the indicated ratios, subject
to the condition that ¢ ;, (W) should be a polynomial in ;.
Herew, ..; ; ..; denotes the minor of order » of det W corre-
sponding to rows /,,...,,, and columns j,,..., j,, and M *lis a
normalization coefficient given by

MW= A=A +j—1i .

IIG—=4+i-D
i<j

— 172

(4.12)

x[[[ </1,~+d—i>!]

From Egs. (4.10) and (4.11), both ¢;, _and Z;, are
only depending upon some special combinations of the var-
iables ;. If we make the following change of variables

gl

G4+ 1dloed—j+1

A , ifi=l,j—1,
o Wi d1wd—j+1 (4.13)
7 wedlwed—j+ 15 ifi =j,

o ifi=j+ 1,d,

RIS

for anyj = 1,...,d, then ¢ ;,
i=1,..d,
¢(’1)min (-xllr--)xdd )

A A= A, — A4
=M! ](xdd) 1 '12(xd—1,d—1) 2— 4

X"'X(xzz)ld_]_/ld(-xu)/td: (4.14)

whereas Z;, is converted into a polynomial in X, j>1,
which coincides with the U(d) CS representation ¢( 4 (x) of
the Gel'fand state |(4)) in the x parametrization,

becomes a polynomial in x;,

Z iy (XgyseesXagg—15Xa— 1,150+5%d — 1,4 — 290-5%21)
=du, (x). (4.15)

The latter assertion can be easily checked for U(2) and U(3)
by explicit construction of Z;, using the raising operator
technique of Appendix A. By way of illustration, it is proved
for U(2) in Appendix B.

Up to some fixed, irrelevant dependence on x,;,...,X 44,
the bases ¥, (x) of the subspace of Bargmann space, char-
acterized by a given U(d) irrep [A] and of highest weight
with respect to U(n), therefore provide us with a realization
of the U(d) CS functions ¢( 1, (x) corresponding to the same
U(d) irrep. This is corroborated by the fact that the CS
representation ? of the U(d) generators, given in I, coin-
cides with the dlﬂ'crential operators with respect to x, de-
fined by the following relation:

Eppay (X) =Yy KipeXaa) € by (X), (4.16)

where E;; is given by Eq. (4.8). This statement is again easily
checked for U(2) and U(3). Itis proved for U(2) in Appen-
dix B.

Finally, the U(d) CS measure dp(x), defined in Eqgs.
(3.3), (16.17),and (I 6.20), can be derived from Bargmann
measure du (W), given in Egs. (4.6) and (4.7). For such
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purpose, we start from the orthogonality properties of the
U(d) irrep bases ¢ ;, (W) in Bargmann space,

fd,u(W) [¢u‘) (w) ] o, (W) = 5(/1'),(11) ’ (4.17)
and of the U(d) CS functions {5(,1, (x),
fdﬁ(x) [&(,1,') (x)]‘¢(,1) (x) =6(¢1’),(/1)' (4.18)

By comparing Eqgs. (4.17) and (4.18), we get the following
equation:

fdl‘(W) (% (W) ]*P e, (W)

- [ B@ by 1% (. (4.19)
To obtain the U(d) CS measure dp(x), we therefore only
have to make the change of variables (4.13) and successively
integrate over x;, j <i, and x;, in the left-hand side of Eq.
(4.19). This procedure, although straightforward, becomes
quite tedious for d values greater than 3. As an example, we
detail the derivation for 4 = 2 in Appendix B.

The above results are valid for generic U(d) irreps, i.e.,
irreps for which 4, >A4,> - >4, and for the x parametri-
zation of CS. To conclude the present section, let us briefly
indicate how the y parametrization of the CS representation
can be realized in Bargmann space, and the results extended
to nongeneric irreps.

As for the former point, it is straightforward to check
that the polynomial Z,, in the d(d — 1)/2 variables x;,

J>I, can alternatively be written in terms of the d(d — 1)/2
variables

y,,-‘= w,u,. Leje1f41mdd ...d._,'/w“. Loeddod—is j>i’
(4.20)

related to the previous ones by the determinantal relation
' J

Sp(2dn,R) 2 Sp(24,R)

(D™ or (D"~}

where O(n) is generated by the operators
Ay, = —A,=—Ii(E, -E,), I<s<ikn. (5.3)

In Eq. (5.2), underneath each group we have indicated
the labels characterizing its irreps. All the boson states be-
long to one of two irreps of Sp(24n,R), {((4)™) or
((3)°" ~'3), according to whether the total number N of bo-
sons is even or odd. Within each one of them, the Sp(24d,R)
and O(7n) groups are complementary.’-'® The representation
space ¥ ;, of (1 ) may therefore be realized by selecting all
the boson states transforming under an O(#n) irrep charac-
terized by (4, - 4, ), and belonging to a definite row of the
latter, e.g., the highest weight state.
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(A ) = <A'd + n/2,...,/11 -+ n/2>

Vi =X — XX + z b 15,978 7%
iFe 1<k<1<j
—ic1
— et (= 1Y X 1% _1,j—2 " X1,

(4.21)

Since Eq. (4.21) is nothing but the relation between the x
and y parameters, Eq. (I 3.23b), the transformed polyno-
mial Z;, (y) coincides with the U(d) CS representation
# 1, (v) of the Gel’fand state | (1) ) in the y parametrization.

As for the latter point, we note that the transition from
the generic irreps to nongeneric ones can be carried out by
setting some of the x or y parameters equal to zero. In Barg-
mann space, this arises quite naturally from the fact that for
nongeneric irreps Z ;, does not depend on the whole set of
variables x;; or y;, j>i. In deriving the U(d) CS measure
from Bargmann measure, extra integrations over the missing
variables can then be performed. For instance, for cases b or
¢ U(3) irreps (corresponding to A,>4,=A4; or
A, =A,>A,, respectively), Z ,, is independent of the vari-
able x,; = W31, /Wy3,12 OF Y33 = W,/ W3, Which is set equal
to zero in the corresponding CS representation. Integration
OVer Xx,; Of yj,, in addition to x;, j<i, leads to the results
contained in Egs. (I 6.12), (1 6.17), and (16.22).

After these preliminaries on a realization of the U(d)
CS represéntation in a Bargmann space of analytic func-
tions, we can now proceed to derive similar results for the
Sp(2d,R) annihilation-operator CS representation.

V. REALIZATION OF THE Sp(2d,R) ANNIHILATION-
OPERATOR COHERENT STATE REPRESENTATION IN
A BARGMANN SPACE OF ANALYTIC FUNCTIONS

As is well known,’ the Sp(2d,R) group can be embed-
ded into the larger group Sp(2dn,R), whose generators are
the operators E ,, defined in Eq. (4.3), and

D} =D}, =nmu <K(jt),

Di-'-ﬁ = Yjis = §B§119 (is) < ( je).
As a matter of fact, we have the following group chain:

(5.1

X O(n)

5.2
Ay A4, (5:2)

[

For practical purposes made clear later on, we now de-
note by g,, instead of w,, the complex variables representing
the boson creation operators 7,, in Bargmann representa-
tion. Let 57 be the corresponding Bargmann space, i.e., the
Hilbert space spanned by the analytic functions ¥(g), and
endowed with the scalar product defined in Eqs. (4.5)-
(4.7) with g substituted for w. In such a space, the O(7) and
Sp(2d,R) generators are represented by the differential op-
erators

. & J
A, = "'l_z (gh—_git'—a_)’

(54)
og; 0g;

and
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D5= Zgisgjs’

s=1

n 2
p,=3% 2 (5.5)
s=1 98 ag,s
z a n
E,=Y g, -2 ,
' ,ng a2, + 5 %

respectively.

The functional images of the boson states belonging to
& 1y span a subspace of Bargmann space, denoted by
5 1) By definition, the functions in #°,, have definite
transformation properties under the O(»n) group generated
by the operators (5.4), that is, they are the highest weight
states of all the O(#n) irreps characterized by the same labels
(/11 /14 ).

To construct such functions, an explicit procedure was
devised in Ref. 18. To begin with, we introduce the new var-
iables

8y = 2713 8iza—1 —8iza)s

bio =27"%(8i2a_1 + i8120):

¢, =g, (onlywhenn=2v+1),
i=1l..d, a=l,..,v=[n/2].

(5.6)

Under transformation (5.6), Bargmann measure remains
invariant. Next, we define

Wy =w; = 21 8is &s
= 3 (Gibu +a,by,), whenn=2v,

a=1

= Y (ubs +a,b,) +cc;, whenn=2v+1,

a=1

Wy =a,, a=1,.,v,

ia?

W, =b,, p=1,..v—i

=¢, p=v—i+1 (onlywhenn=2v+l).‘

ij=1,..,d. (5.7)
Then, when using Wong’s definition of weight and raising
generators,'? it turns out that the highest weight states of all
the O(n) irreps characterized by (A, - A,) only depend
upon the variables w; = w;;, and W, i, j = 1,...,d, and are the
simultaneous solutions of the following system of partial dif-
ferential equations:

d_ 4 — —
kg] Wy amk'. ¢(W,W) -—/1,-¢(W,W),

(5.8)

a9
S By (W#) =0, i<j.
2% g, Y /

The restriction of the Sp(2d,R) generators to ¥ ;, is
easily determined from the relation

J ¢(W,W) = [2 gjsAwy + 7
J

g
s=2a—1lor2a,

a
awia

] Y(W,W),

(5.9)
where
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2°12, ifs=2a—1<2d,

v, ={ —27Y% ifs=2a<2d, (5.10)
0, ifs>2d.
The result reads
D} $p(w,W) = wy Y(w,#), (5.11a)

d

P bo® (3 [2u (F 735, + 59

- d n
+ (21: Wy o + e} ‘Ski) Awk,]

il

+{A,[wA, — (d + 1)1]},.,.) YW, W),
(5.11b)

E, $(w,W) = [(wAw),., + 3 W, +%5,,] P(W,F).
k

(5.11¢c)

Since the Gel’fand states |(4)) are annihilated by the
generators D, it results from Eq. (5.11b) that their func-
tional images ¢ ,, (w,W) do not depend upon the variables
w;. For such functions, Eq. (5.8) reduces to Eq. (4.9). Tak-
ing into account that W, = a; are Bargmann variables, we
conclude that all the results of Sec. IV are applicable to
¥4, (W). In particular, the transformation (4.13) converts
it into the following product:

Yoy (W) =v (X Xy )ém (x). (3.12)

From Eq. (5.11a), it now results that the functional
image of |N;(4)) is given by

Unea (W, W) = Fy (W)Y, (W).
Comparison with Eqgs. (3.7) and (5.12) shows that

Uneay (W, W) = Yty Fisee5%aa Y Bncay (W,X). (5.14)

Apart from a fixed, irrelevant dependence on x,,,...,x 4, con-
tained in ¥, (Xyy,...X44 ), the Bargmann representation
Uney (WW) of the F ;, discrete bases |N;(4)) therefore
coincides with their annihilation-operator CS representation
#neay (W,X). Hence the subspace #°;, of Bargmann space
carries a realization of the annihilation-operator CS repre-
sentation, wherein the variables w; = w; and x;; (j> i) are
those combinations of g, defined in Egs. (4.13), (5.6), and
5.7).

The corresponding realization of the Sp(2d,R) genera-
tors X results from Eq. (5.11) where Eqgs. (4.8) and (4.16)
are considered. It is straightforward to check the coinci-
dence between the differential operators £#” with respect tow
and x, defined by the relation

Xy (W,W) = Kl’u)m (X1 150X aq ) 2 Briay (W,X),
(5.15)

and the annihilation-operator CS representation of the
Sp(2d,R) generators, given in Eq. (3.17), as expected. Note
that a preliminary account of the derivation of £ in Barg-
mann space was already given in Ref. 20.

Finally, by the same way as the U(d) CS measure was
deduced from Bargmann measure in Sec. IV, it can be
proved that the annihilation-operator CS satisfy a unity re-
solution relation with a measure do(w,z), which, at least in

d
ij

(5.13)‘
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principle, can be obtained from Bargmann measure. For
such purpose, let us calculate in &% ,, the overlap of two
discrete bases of F ;,,

(N'5(A)N;(4))

= Idﬂ(g) [N (W,W)] *¥neay (W,W).

After performing the transformations (5.6), (5.7), and
(4.13), then introducing Eq. (5.14) into the right-hand side
of Eq. (5.16), the integrations over W,, i=1,...d,
a=d+1,.v W, i=1.4dp=1L.v—iorv—i+]1
(according as n = 2v or 2v + 1), and x;;, 1< j<i<d, can, at
least in principle, be carried out. It remains an integral over
wy, 1<i< j<d, and x;;, 1<i < j<d, containing some measure
do(wx),

(N;(A)IN;(A))

= J do(w,x) [dnary (W,X) ] *@neay (W,X).

By taking the definition (3.2) of x4, (W,X) into account,
Eq. (5.17) can be transformed into the following relation:

(N';(A)|N;(4))

(5.16)

(5.17)

- fda(w,x)m';u NwR) wxN;(A)).  (5.18)
As a result, we obtain the searched for unity resolution rela-
tion

fda(w,x)lw,x)(w,x| =1,,, (5.19)
showing that the annihilation-operator CS form a contin-
uous basis of # ;,. Although the procedure described
above enables us to prove Eq. (5.19), it is not suitable for
deriving the explicit form of do(w,x). A more convenient
alternative method for such purpose has been described else-
where.®

VI. CONCLUSION

In the present paper, we have extended to all positive-
discrete series irreps of Sp(24,R) the annihilation-operator
CS introduced by Barut and Girardello for Sp(2,R) (see
Ref. 8) and later on generalized by Deenen and Quesne to
the Sp(2d,R) positive-discrete series irreps of the type
{(A + n/2)?). The CS we have introduced for such purpose
are of mixed type, in the sense that they are annihilation-
operator CS as regards the noncompact generators only,
while presenting some features of the unitary-operator CS
(namely their parametrization) as concerns the compact
generators.

We did show that such CS form a continuous basis of the
irrep representation space % (,  , and we did obtain in com-
pact form the corresponding representation of both the dis-
crete bases of # ;, and the Sp(24,R) generators. In addi-
tion, quite detailed formulas were written down for Sp(4,R)
and Sp(6,R).

In contrast to what was done in I for the unitary-opera-
tor CS, we did not address ourselves to the determination of
the explicit form, the reproducing kernel, nor the measure of
the annihilation-operator CS. Even for the simplest case of
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theirreps ((4 + n/2)%) treated in Ref. 9, such a determina-
tion is indeed quite tedious. As a matter of fact, the lacking
quantities are irrelevant to the most important application of
the annihilation-operator CS, that is of conceptual nature
and will now be reviewed.

One of the many interesting properties of the standard
CS consists in the resulting Bargmann representation,
wherein the boson creation and annihilation operators 7 and
£ are, respectively, realized by the operator of multiplication
by the complex variable g, and by the corresponding differ-
ential operator d /dg. Bargmann representation therefore
provides the mathematical foundation for the widespread
habit of replacing £ by a symbolic differentiation with re-
spect to 7. In the same way, in the Sp(2d,R) annihilation-
operator CS representation, each noncompact raising gener-
ator D}, is realized by an operator of multiplication by a
complex variable w;, while the remaining generators be-
come differential operators with respect to the variables w;
[and some extra variables z; parametrizing U(d) CS]. The
annihilation-operator CS representation, therefore, provides
the mathematical foundation for the recently introduced use
of differentiation operators with respect to D}, in symbolic
expressions of the Sp(24,R) generators.?!* In conclusion, it
presents some of the simplifying features of Bargmann repre-
sentation that are lacking in the unitary-operator CS repre-
sentation.

APPENDIX A: U(2) AND U(3) BASIS FUNCTIONS IN THE
COHERENT STATE REPRESENTATION

The purpose of this appendix is to derive the explicit
form of the U(2) and U(3) basis functions ¢, (z) and
By, uv (X), respectively, given in Eq. (3.10a) and in Eqgs.
(3.11) and (3.12). .

As explained in Sec. 7 of I, the functional image ¢ ;, (z)
of a U(d) Gel'fand state | (1)) in the CS representation can
be obtained from that of the U(d) irrep lowest weight state

by, (2) =1, (A1)

by applying an appropriate polynomial P, in the differen-
tial operators &,

&(A) (2) =P(z)(ip)1- (A2)

This polynomial can be expressed in terms of U(d),
U(d — 1),...,,U(2) raising operators. A U(n) raising opera-
torR %, m = 1l,...,n — 1, is herein defined as a polynomial in
the U(r) generators, transforming any Gel’fand state char-
acterized by a U(n — 1) irrep [A, - A, _, ], and of lowest
weight in U(n — 1), into a Gel'fand state specified by the
U(n —1) irrep [A, - h,, + 1 h,_,], and still of lowest
weightin U(n — 1). It differs from a Nagel-Moshinsky rais-
ing operator,” in the substitution of U(n — 1) lowest-
weight states for their highest-weight ones, and can be con-
structed by using similar techniques.
For U(2) and U(3), our raising operators read

RI=&,, (A3)
R?:gu, R;=g13(g11_?22_1)+?12§23’
(A4)
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and the normalized polynomials P, (#) are given by P, H,(&’) =N (RTY TR TR,

P (&) =N MM(RIH 4, %) (A6)
|
N = [(Ay = 2L Ay — A — AN, (A7)
N = [y — py + 1D (A — )M A — iy + DUA, — )1 gy — v)1]H2
XA =A)UA — A3+ DA, — ANy — AW g — Ay + DIy — AN Y — )] V2 (A8)
For U(2), from Eqgs. (A3) and (I 5.9) we obtain the relation _
R 1= =AM — A, —a)] 72 (A9)

which can be proved by induction over a. Then Eq. (3.10a) results from the combination of Eq. (A9) with Egs. (AS5) and
(A7).
Proceeding through the same way for U(3), from Eqgs. (A3), (A4), and (I 5.10) we get the following results

(R ; Y1=(—=1D*A— A3+ DA, —ANMA, — A —a+ DA, ~ A3 —a)!] —1(x2 —Xx.X3)%, (A10)
(R} )ﬂ(xz = x%3)% = (4, = AN (A, — 4, — )] _lxlﬁ(xz —Xx5)% (All)
and
— A+ a—k
(R3)xP(x, —xx3)% = Z’ /12 +‘Z o 7/) (’Z)x,""‘"J\:g”"‘(x2 — X x3)* K (A12)

Their combmatxon with Egs. (A6) and (A8) finally leads to Eqgs. (3.11) and (3.12).

r

APPENDIX B: REALIZATION OF THE U(2) COHERENT and
STATE REPRESENTATION IN A BARGMANN SPACE OF Z,(x,0) = [(A, — A2
ANALYTIC FUNCTIONS b 21 1= Mk

The purpose of this appendix is to detail, for the d = 2 N (R DU TR V) (€ M
case, the realization of the U(d) CS representation in a Barg- » (B7)
mann space of analytic functions as introduced in Sec. IV. The comparison of Eq. (3.10a) with Eq. (B7), where we set

For U(2), the normalized lowest weight state function ~ z = x,,, leads to the conclusion that

¥, (W) is given by

Z,(z) =4, (2). (B8)
Ya, () = (4, — Ay + DV2[(A, + DRI~ F" ’ b act that
_ o rom Eq. (B5) and the fact that ¢, (x) does not depend
X (Wy1)" =42 ( Wiz, )™ (Bl) 4y X5, it results that *
From the latter, any function
a 1
b =, 02, (22) (B2) au—,—,,"" 0 = (B g2t g 5 o
21
i lying the relati —
can be obtained by applying the re :flon 3w Y () = — 1y, 7] g, (x),
Yu (W) = A 0Bt~ "y, (W), ~ (B3) 12 %1 (B9)
where E,, and .47+ are defined in Eqs. (4.8) and (A7), 9 0 B 3
respectively. The result reads —, (x) = ( - — ) ,
Iw,, e ” Oxy W Oxy 3"22 Y ()

Y (W) =[(4, -4, + 1)1]172
1 24—l p 2 ¥, (X) =0y, _3_¢“ (x).

X (wu)ﬂ —Az(wﬂ )A. —,u(wu,lz ),1.,. (B4) 37)22 ax“
By making the transformation

_ _ . Let us now introduce Eq. (B9) into the left-hand side of Eq.
X1 =Wy, X2 = Wiy, (4.16), and take into account that

(B5)
X2 =;_:’ X3 = Wy, i Y. (x) =4, ¢, (x),
we obtain (B10)
Vi, (Xy1X22) = (A — A, + D[ (A, + DU, V2 X7 a o Y (x) = (4, — 42)Y, (x).
X (X52) % ™ *2(x4,) 7, (B6)  For E|, for instance, we obtain
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E, ¢, (x)= (wu —a“"*'wu g

n
7. 5@:;*7) Y (X)

_ d J ."_)
.—(xu + X34 %, + 2 ¢p(x)

=, (X) (23 + 4, + n/2)$, (2), (B11)

where we set again z = x,, and d = d /dx,,. Hence, by com-
paring with the right-hand side of Eq. (4.16), we get

&, =20+A,+n/2.
For the remaining generators, the results read
Frn=—20+A+n/2, &,=2(Ay—1,—29),
%, =0, (B13)

in accordance with Eq. (I5.9).

For the determination of the U(2) CS measure from
Bargmann one, we first note that the inverse of transforma-
tion (B5) and the corresponding Jacobian are

(B12)

Wiy = XppXap Wiy =Xqp
(B14)
Wyy = Xpp Wy = (X33%5) 71 (X1 + X12%33),
and
a(w’W‘) -2
OFF*) _ : B15
3xx*) |%24] (B15)

respectively. Then the left-hand side of Eq. (4.19) becomes
f du(F) o, (W)Y, ()
=g 4(MYH? f dxy; dx$ |%| 722, (x3)Z,, (x3,)
xfdxzz dx3,
X expl — (1 + [x51[2) [x55]7] x5 [2* = *
dexll dx¥ exp( — |x21x22|"2|x“|2)|xu|%
dexlz dx?}, exp { ~ |xa| 72
2 2, Xh X11
X| (U4 g |2 X2 + —xpp + = x| -
x3 X22
(B16)

It is straightforward to perform the integrations over x,,,
X1, and x,,. The result reads
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f du(®)9, (7)), (W)

=7 A — A, 4 l)fdzdz‘

X (14 |z?)~ @ —h*Dg  (z%)¢, (2), (B17)

in accordance with Eq. (4.19), when Eqs. (1 4.24), (1 6.11),
(I16.17), and (I 6.21) are taken into account.
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